Summary

隔离和脂质A的化学表征革兰氏阴性菌

Published: September 16, 2013
doi:

Summary

隔离脂多糖(LPS)由革兰氏阴性菌的类脂A结构域和表征提供了洞察抗生素耐药性的细胞表面为基础的机制,细菌的生存和健康,以及如何化学性质不同的脂质分子种类差异调节宿主先天免疫反应。

Abstract

脂多糖(LPS)是革兰氏阴性细菌的主要细胞表面分子,沉积在外层膜双分子层的外层小叶。 LPS可以细分为三个结构域:远侧O-多糖,核心寡糖和脂质组成的脂质A结构域的分子种类和3 – 脱氧-D-甘露 – 辛-2 – ulosonic氨基酸残基(KDO)。该类脂A结构域是细菌细胞生存所必需的唯一组成部分。以下的合成,脂质A是化学修饰的响应于环境压力,如pH值或温度,以促进耐抗生素化合物,并通过宿主先天免疫反应的介体,以逃避识别。下面的协议的细节由革兰氏阴性细菌的脂质A的小型和大型隔离。分离的材料然后化学用薄层色谱(TLC)或质谱(MS)。除了基质辅助激光解吸/女的电离时间光(MALDI-TOF)质谱,我们还描述了使用电喷雾离子化(ESI)耦合到碰撞诱导解离(CID)和新聘紫外线光解(UVPD)方法分析类脂A分子种类串联质谱协议。我们的MS协议允许明确的决心,化学结构,极为重要的类脂A分子,含有独特或新颖的化学修饰的表征。我们还描述了放射性同位素标记,并随后分离,脂质A从细菌细胞通过TLC分析。相对于基于MS的协议,薄层色谱法提供了一种更经济的和快速的表征方法,但不能被用来明确指定脂质A的化学结构,无需使用已知的化学结构的标准。在过去的二十年间隔离脂质A和表征导致了许多令人兴奋的发现,提高了我们对革兰阴性菌,抗生素电阻机制的生理学的理解距离,人的先天免疫应答,并已在抗菌化合物的发展提供了许多新的目标。

Introduction

脂多糖(LPS)是几乎所有的革兰氏阴性菌的主要外表面的分子和由三个结构域分子:远侧O-抗原多糖,核心寡糖,以及膜结合的脂质沉积的外部小叶域外膜双层1,2。的脂质A结构域由3 -脱氧-D-甘露-辛-2 – ulosonic(KDO)残基和脂质A分子物质,其中脂质A可以被定义为LPS时温和酸水解1的氯仿可溶部分2。标准的脂质A分子可以化学定义为diglucosamine骨干即六酰化和 -磷酸化;与模型生物体大肠杆菌(大肠杆菌)1,2中观察到的主要脂质A物种一致。九个组成型表达的基因,在整个革兰阴性菌的保守,有负责生产的脂质A结构域( 1)1,2。大多数细菌有另外一组基因,这变化在进化保守性程度,参与脂质A 3的进一步的化学修饰。去磷酸化,除去酰基链的,并且另外的化学基团如氨基糖( 例如 aminoarabinose)和/或磷酸乙醇胺的是最常观察到的活性( 图1)。许多负责脂质A修饰酶的直接由环境信号,如二价阳离子激活,或者它们的表达是由两个组分的反应调节系统3调节。

脂质A物种的宿主先天免疫系统的识别是由Toll样受体4/myeloid分化因子2(TLR4/MD2)共受体介导4。 MD2和脂质A酰基链,以及TLR4和脂质A的1和4'磷酸基团促进唇部的强关联之间的疏水力id一个与TLR4/MD2 4,5。从而改变酰化状态或脂质的负电荷一个影响TLR4/MD2基于脂质修饰的识别和先天免疫反应的下游刺激活化剂NF-κB和炎症介质如TNFα和IL 1-β6,7。掩盖脂质A的负电荷的修改还可以防止杀菌阳离子抗菌肽的结合,对革兰氏阴性细胞表面3,8。许多类脂A的修改假设特定的环境条件,如内部的人类宿主中或生态位之下,以增加细菌的健身。出于这个原因,许多修饰酶抗菌化合物的合理开发有吸引力的目标。类脂A结构的化学多样性,对于生物体和/或环境,这些不同结构的生物学意义使脂质A的结构特征在T一个重要的努力他研究的革兰氏阴性细菌。

从整个细菌脂质A分子的分离涉及脂多糖从细菌细胞表面上的提取,水解步骤以释放脂质A,接着是最终的纯化步骤9-11。最经常提到的脂多糖提取过程是热酚水提取过程中,首先由韦斯特法尔和JANN 10推出。后提取全部的LPS进行温和酸水解,其中化学上从6'-羟酰脂质A的末端葡糖胺糖( 图1)的分离KDO。无数陷阱的热酚水的程序,包括使用高危险试剂的存在,需要降低共同提取的核酸和蛋白质,并且好几天都必须完成的协议10。

我们的实验室进一步发展的脂质A的提取和分离首先由Caroff和雷茨12,13研制。相对于热酚水程序,这里介绍的方法更快速,高效,适应范围广泛培养体积的5毫升到多升。此外,与热酚水提取,我们的方法不适用于粗糙或光滑型LPS的选择,提供类脂A物种的最佳恢复。在我们的协议,使用氯仿,甲醇和水,其中LPS可以通过离心沉淀的混合物进行全细菌细胞的化学裂解。轻度酸水解,溶剂萃取(布莱 – 代尔)的组合是用来解放脂质A的共价连接的多糖。布莱和代尔的方法中首先被施加到脂质物种的提取从各种动物和植物的组织14,这里修改为从脂质A。在这最后的分离步骤中分离的水解多糖,氯仿可溶的类脂选择性地划分成下有机阶段。以进一步纯化脂质A,反相或阴离子交换柱层析可用于12。

脂质A物种从整个细胞的分离后,可以使用若干分析方法来表征的分离的材料,例如核磁共振,薄层色谱法,和基于MS的分析物的化学结构。核磁共振允许非破坏性的结构解析,并提供了详细的结构与糖苷键,酰基链位置明确赋值,并附着位点脂质A修改,比如aminoarabinose或磷酸乙醇胺15-17的分配。脂质A的NMR分析是不是我们的协议中所讨论的,但已经充分说明别处15,16。对于快速分析TLC为基础的方法是经常使用的,但未能提供有关精细化学结构的直接信息。质谱为基础的协议是最经常使用的方法来表征类脂A结构18,19。相关矩阵的激光解吸电离(MALDI)-MS通常被用于最初勘测完好脂质A的种类。从分析物根据我们的提取方法制备产生单电荷离子。随着越来越多的精细结构分析是必需的,MS / MS为基础的方法证明比MALDI-MS的更多信息。耦合电喷雾电离(ESI)单独或多个带电脂质A的前体离子是进一步由分散的碰撞诱导解离(CID)或紫外线光解(UVPD),生成结构信息的产物离子18,20,21。也经常在ESI-MS产生中性丢失的产品从类脂A的前体离子提供的结构信息的附加层。

串联质谱(MS / MS)已被证明是对脂质A结构的阐明中不可缺少的和通用的方法。在MS / MS离子被活化,以产生可被用来阐明该前体离子的结构的诊断裂解谱。最广​​泛AVAilable MS / MS方法是CID。这种方法产生的碎片离子通过选定的前体离子的碰撞与惰性气体的目标,从而在通向离解的能量沉积。 CID已被证明在类脂A结构的分配,适用范围广的细菌种类22-33的一个重要工具。

虽然CID是最普遍实施MS / MS方法,它生成的子离子的有限阵列。 193纳米UVPD是一种替代和补充的MS / MS方法。此方法使用的激光照射离子和光子的吸收导致离子和随后的离解的通电。这种高能量的MS / MS技术生产的产品比离子的CID更多样化,从而提供更多的信息碎片化的模式。特别是,UVPD能提供有关基于分裂的糖苷,胺,酰和CC挂钩债券18,21,34中脂质A种微妙的变化信息。

Protocol

所有的解决方案应该用超纯水和HPLC级甲醇和氯仿来制备。含有有机溶剂,如甲醇,氯仿或吡啶并浓缩的酸或碱制备的溶液应准备并在化学通风橱中使用。所有的解决方案可以被存储在RT。溶剂应在有刻度的玻璃汽缸被测量并存储在玻璃溶剂瓶带有PTFE内衬的盖子。对于长期储存的含有氯仿溶剂应存放在有色琥珀色玻璃瓶中,以避免在生产光气,反应性高的酸性氯化物。聚四氟乙烯离心管中,旋转蒸…

Representative Results

E的规范脂质A 大肠杆菌和沙门伤寒是葡糖胺的六酰化二糖与磷酸基团的1 -位和4' -位。在生长过程中的富媒体( 如卢里亚肉汤)的脂质A部分包含焦磷酸组1位产生了三磷酸化的36种( 图1)。 KDO(3 -脱氧-D- 甘露 -辛酮糖酸),附着在6'-羟基并作为一个桥梁,脂质A链接到LPS的剩余碳水化合物域( 即核心寡糖和O-抗原域)。虽?…

Discussion

在这个协议中,我们有详细的脂质A种细菌全细胞的分离,并描述了薄层色谱或质谱为基础的分析方法,以化学表征这个与世隔绝的材料。串联质谱法是一种强大的战略生物化合物的从头结构表征,并且是无价的,在自然界中观察到的脂质A分子的一整套的化学特性。 CID和UVPD是创建不同类型的产物离子,提供关键的指纹类脂A分子的两个互补的激活方法。同时使用CID和UVPD MS / MS碎片可以澄清?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了资助AI064184和AI76322从卫生研究院(NIH)全国学院和格兰特61789-MA-MUR由美国陆军研究办公室的MST研究也支持韦尔奇基金会资助F1155和美国国立卫生研究院授予R01GM103655到JSB支持

Materials

Name of Reagent/Material Company Catalog Number Comments
Chloroform Thermo Fisher Scientific C607 HPLC Grade
Methanol Thermo Fisher Scientific A452 HPLC Grade
Teflon FEP Centrifuge Bottles Thermo Fisher Scientific 05-562-21
Silica Gel 60 TLC Plates EMD Biosciences 5626-6
Grade No. 3MM Chromatography Paper Whatman 3030700
Orbitrap Elite Thermo Fisher Scientific
Mass Spectrometer
ExciStar XS Excimer Lasrer Coherent Inc.
PicoTip Nanospray ESI emitters New Obectives ≥ 30 μm to reduce clogging
Model 505 Pulse/Delay Generator Berkeley Nucleonics Corporation
Hot Plate Thermoylne 2200 Barnstead/Thermolyne HPA2235MQ
16×125 mm GPI 15-415 Threaded Disposable Borosilicate Culture Tubes Corning Pyrex 99449-16X
Reusable Threaded PTFE screw caps GPI 45-415 Corning 9999-152
Personal Molecular Imager System (phosphorimager) BioRad 170-9400
Autoradiography Cassette Thermo Fisher Scientific FBCS810
Phosphorscreen SO230 Kodak
Peptide Mass Standards Kit Sequazyme P2-3143-00
Sonifier S250-A Branson 101063196
1.5 ml 12×32 mm Tapered Base Screw Thread Vial Thermo Fisher Scientific C4000-V1

Riferimenti

  1. Trent, M. S., Stead, C. M., Tran, A. X., Hankins, J. V. Diversity of endotoxin and its impact on pathogenesis. Journal of endotoxin research. 12, 205-223 (2006).
  2. Raetz, C. R., Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev. Biochem. 71, 635-700 (2002).
  3. Raetz, C. R., Reynolds, C. M., Trent, M. S., Bishop, R. E. Lipid A Modification Systems in Gram-Negative Bacteria. Annu. Rev. Biochem. 76, 295-329 (2007).
  4. Kim, H. M., et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 130, 906-917 (2007).
  5. Rietschel, E. T., et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 8, 217-225 (1994).
  6. Medzhitov, R., Janeway, C. Innate immunity. The New England journal of medicine. 343, 338-344 (2000).
  7. Dinarello, C. A. Interleukin-1 and interleukin-1 antagonism. Blood. 77, 1627-1652 (1991).
  8. Guo, L., et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell. 95, 189-198 (1998).
  9. Yi, E. C., Hackett, M. Rapid isolation method for lipopolysaccharide and lipid A from gram-negative bacteria. The Analyst. 125, 651-656 (2000).
  10. Westphal, O. a. J., K, Bacterial Lipopolysaccharide. Extraction with phenol-water and further application of the procedure. Methods Carbohydr. Chem. 5, 83-91 (1965).
  11. Galanos, C., Luderitz, O., Westphal, O. A new method for the extraction of R lipopolysaccharides. European journal of biochemistry / FEBS. 9, 245-249 (1969).
  12. Raetz, C. R., Purcell, S., Meyer, M. V., Qureshi, N., Takayama, K. Isolation and characterization of eight lipid A precursors from a 3-deoxy-D-manno-octylosonic acid-deficient mutant of Salmonella typhimurium. The Journal of biological chemistry. 260, 16080-16088 (1985).
  13. Caroff, M., Deprun, C., Karibian, D., Szabo, L. Analysis of unmodified endotoxin preparations by 252Cf plasma desorption mass spectrometry. Determination of molecular masses of the constituent native lipopolysaccharides. The Journal of biological chemistry. 266, 18543-18549 (1991).
  14. Bligh, E. G., Dyer, W. J. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology. 37, 911-917 (1959).
  15. Zhou, Z., Ribeiro, A. A., Raetz, C. R. High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-L-arabinose and phosphoethanolamine substituents. Different attachment sites on lipid A molecules from NH4VO3-treated Escherichia coli versus kdsA mutants of Salmonella typhimurium. The Journal of biological chemistry. 275, 13542-13551 (2000).
  16. Wang, X., et al. Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochimica. 45, 14427-14440 (2006).
  17. Strain, S. M., et al. Location of polar substituents and fatty acyl chains on lipid A precursors from a 3-deoxy-D-manno-octulosonic acid-deficient mutant of Salmonella typhimurium. Studies by 1H, 13C, and 31P nuclear magnetic resonance. The Journal of biological chemistry. 260, 16089-16098 (1985).
  18. Madsen, J. A., Cullen, T. W., Trent, M. S., Brodbelt, J. S. IR and UV Photodissociation as Analytical Tools for Characterizing Lipid A Structures. Analytical Chemistry (Washington, DC, United States. 83, 5107-5113 (2011).
  19. Banoub, J. H., El Aneed, A., Cohen, A. M., Joly, N. Structural investigation of bacterial lipopolysaccharides by mass spectrometry and tandem mass spectrometry. Mass Spectrom. Rev. 29, 606-650 (2010).
  20. Hankins, J. V., Trent, M. S. Secondary acylation of Vibrio cholerae lipopolysaccharide requires phosphorylation of Kdo. The Journal of biological chemistry. 284, 25804-25812 (2009).
  21. Hankins, J. V., et al. Elucidation of a novel Vibrio cholerae lipid A secondary hydroxy-acyltransferase and its role in innate immune recognition. Molecular Microbiology. 81, 1313-1329 (2011).
  22. Chan, S., Reinhold, V. N. Detailed structural characterization of lipid A: electrospray ionization coupled with tandem mass spectrometry. Anal. Biochem. 218, 63-73 (1994).
  23. Boue, S. M., Cole, R. B. Confirmation of the structure of lipid A from Enterobacter agglomerans by electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 35, 361-368 (2000).
  24. Kussak, A., Weintraub, A. Quadrupole ion-trap mass spectrometry to locate fatty acids on lipid A from Gram-negative bacteria. Anal. Biochem. 307, 131-137 (2002).
  25. El-Aneed, A., Banoub, J. Elucidation of the molecular structure of lipid A isolated from both a rough mutant and a wild strain of Aeromonas salmonicida lipopolysaccharides using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19, 1683-1695 (2005).
  26. Murphy, R. C., Raetz, C. R. H., Reynolds, C. M., Barkley, R. M. Mass spectrometry advances in lipidomica: collision-induced decomposition of Kdo2-lipid A. Prostaglandins Other Lipid Mediators. 77, 131-140 (2005).
  27. Lee, C. -. S., Kim, Y. -. G., Joo, H. -. S., Kim, B. -. G. Structural analysis of lipid A from Escherichia coli O157:H7:K- using thin-layer chromatography and ion-trap mass spectrometry. J. Mass Spectrom. 39, 514-525 (2004).
  28. Wang, Z., Li, J., Altman, E. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide. Carbohydr. Res. 341, 2816-2825 (2006).
  29. Mikhail, I., Yildirim, H. H., Lindahl, E. C. H., Schweda, E. K. H. Structural characterization of lipid A from nontypeable and type f Haemophilus influenzae: variability of fatty acid substitution. Anal. Biochem. 340, 303-316 (2005).
  30. Madalinski, G., Fournier, F., Wind, F. -. L., Afonso, C., Tabet, J. -. C. Gram-negative bacterial lipid A analysis by negative electrospray ion trap mass spectrometry: Stepwise dissociations of deprotonated species under low energy CID conditions. Int. J. Mass Spectrom. 249, 77-92 (2006).
  31. Silipo, A., et al. Structural characterizations of lipids A by MS/MS of doubly charged ions on a hybrid linear ion trap/orbitrap mass spectrometer. J. Mass Spectrom. 43, 478-484 (2008).
  32. Jones, J. W., Shaffer, S. A., Ernst, R. K., Goodlett, D. R., Turecek, F. Determination of pyrophosphorylated forms of lipid A in gram-negative bacteria using a multivaried mass spectrometric approach. Proc. Natl. Acad. Sci. U.S. A. 105, 12742-12747 (2008).
  33. Jones, J. W., Cohen, i. e., Turecek, F., Goodlett, D. R., Ernst, R. K. Comprehensive structure characterization of lipid A extracted from Yersinia pestis for determination of its phosphorylation configuration. J. Am. Soc. Mass Spectrom. 21, 785-799 (2010).
  34. Hankins, J. V., Madsen, J. A., Giles, D. K., Brodbelt, J. S., Trent, M. S. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria. Proc. Natl. Acad. Sci. U.S.A. 109, 8722-8727 (2012).
  35. Han, S. W., et al. Tyrosine sulfation in a Gram-negative bacterium. Nature. 3, 1153-1110 (2012).
  36. Touze, T., Tran, A. X., Hankins, J. V., Mengin-Lecreulx, D., Trent, M. S. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol. Microbiol. 67, 264-277 (2008).
  37. Galloway, S. M., Raetz, C. R. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. The Journal of biological chemistry. , 265-6394 (1990).
  38. Trent, M. S., et al. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. The Journal of biological chemistry. 276, 43132-43144 (2001).
  39. Chung, H. S., Raetz, C. R. Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide. Proc. Natl. Acad. Sci. U.S.A. 108, 510-515 (2011).
  40. Zhou, Z., Lin, S., Cotter, R. J., Raetz, C. R. Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate. The Journal of biological chemistry. 274, 18503-18514 (1999).
  41. Raetz, C. R., et al. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. Journal of lipid research. 47, 1097-1111 (2006).
check_url/it/50623?article_type=t

Play Video

Citazione di questo articolo
Henderson, J. C., O’Brien, J. P., Brodbelt, J. S., Trent, M. S. Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria. J. Vis. Exp. (79), e50623, doi:10.3791/50623 (2013).

View Video