Summary

膳食持续时间作为衡量啮齿动物的奥体非感知反应的指标

Published: January 10, 2014
doi:

Summary

延长膳食时间代表啮齿动物的或非感知行为,类似于人类的守护行为与性疼痛。饮食是一种不需要训练或动物操作的行为,需要皮质参与,并且不与其他实验诱导的行为竞争,将此检测与替代反射或操作测量区分开来。

Abstract

延长膳食时间可用于测量与患有或社会疼痛的人类的守卫行为相似的体面机械性高血症的增加。为了测量膳食持续时间,无拘无束的老鼠连续被关在声音衰减、计算机化的喂养模块中数天到数周,以记录喂养行为。这些声音衰减室配备了周颗粒分配器。分配器有一个颗粒槽,在槽底放置了光束,当啮齿动物从喂食器槽中取出颗粒时,这种光束不再被阻塞,指示计算机投下另一个颗粒。计算机记录从低谷中取出颗粒的日期和时间,从这些数据中,实验者可以计算膳食参数。在计算膳食参数时,根据以前的工作定义了膳食,并设定为 10 分钟(换句话说,当动物 10 分钟不进食时,即动物膳食的末日),并且将最低膳食大小设置为 3 个颗粒。然后,您可以通过软件计算操作员希望的任何时间段的用餐时间、膳食数量、食物摄入量、膳食大小和餐间间隔。在可以计算的喂养参数中,膳食持续时间已被证明是雄性大鼠和雌性大鼠中或社会非侵入性生物标志物。膳食持续时间测量是定量的,不需要训练或动物操作,需要皮质参与,并且不与其他实验诱导的行为竞争。这些因素将此分析与其他记录或社会非感知的操作或反射方法区分开来。

Introduction

动物模型已经被用来研究疼痛和与组织损伤和炎症1,2相关的非感知,但缺乏适当的动物模型导致对机制的不完全了解。虽然目前的模型帮助我们了解与急性和慢性或社会疼痛有关的各种机制,但这些动物模型有优点和缺点。

许多模型测量行为感知反应的持续时间很短。面部梳理是面部神经收缩后的一种已知行为反应其他研究测量面部摩擦与ipsilatere前部或后爪,以及,退缩的头部后,管理正式注射到节奏和状关节(TMJ)或嘴唇4-7。头部抽取延迟是测量无菌行为的另一种模型,其中修改后的尾部轻弹镇痛仪用于在将热量应用于大鼠8的剃光振动垫后量化无菌反应(头部戒断)。在向TMJ9注射谷氨酸后,胃部和按摩师的肌肉活动也被记录为疼痛的相关性。另一项研究测量了睡眠参数的变化,以评估发炎的雌雄大鼠的无菌反应,这些参数包括睡眠延迟、快速眼动(REM)、非REM睡眠百分比和REM睡眠百分比10。大多数测量行为非感应反应的动物模型使用很短的时间框架,每天11-14分钟到几个小时。此外,大多数动物模型测试发生在光相和夜间动物,像老鼠,这可能会导致压力,可以混淆非感性结果15-18。上述检测测量不同或社会条件下的非感性反应,但持续时间短,因此只能用于研究急性疾病。另一种检测方法使用面部表情作为中度持续时间的无感知度,但这种方法可能是主观的19。

为了评估持续或慢性或长期的非感知,一些人使用冯弗雷丝在皮肤表面的应用来评估受神经收缩或TMJ炎症3,20的动物的机械敏感性。利弗曼 等人 2009年测量退出反应使用分级单片后,CFA注射到大鼠的按摩师肌肉 21,22。山崎 等人2008年给TMJ注射了CFA,然后在14天内量化了对TMJ地区施加的机械、热或冷刺激的不敏感行为。不幸的是,这些不敏感的行为检测涉及动物抑制,产生压力激素,学习或替代行为,可能会干扰测量的结果。

测量牙齿新觉的模型利用下颚开口反射,但这种方法可能不可靠23 或不精确24。电密电活性已用于测量牙齿新感25,但这种方法通常要求动物失去知觉,虽然在一项研究中牙齿新认识被调查在自由移动的老鼠26。2008年,Khan使用敏感的应变量表27 研究了牙齿新感与咀嚼功能之间的关系,但这种咬合持续时间模型需要限制动物的正常活动 28。咬伤力是衡量人类牙齿疼痛的可靠指标,但由于大鼠需要训练和/或克制来测量咬伤力,因此引入了压力源,从而得出具有可疑生理意义的发现29-31

使用操作设计来评估无感性行为,可以克服约束和压力的某些限制。一个操作模型使用避免不舒服的温度来评估和描述或描述社会非感知32-35。这种奖励冲突模型是基于加糖牛奶的奖励,诱导啮齿动物自愿将脸靠在加热或冷却的热探针34,36上。然而,测试需要动物训练,但检测的强度是数据以自动化的方式收集。

还有一种动物模型使用非感知诱发的啃食功能障碍作为组织非感知37的指数。然而,啮齿动物被限制在管子里,它唯一的出路就是咬着一只鸽子离开。该模型的一个优点是,它测量小鼠急性或慢性下颚损伤后的下颚功能。然而,啮齿动物是有限的,这增加了一个混淆的替代竞争行为, 逃跑,这将是有压力的,因此可能会影响无菌检测结果。

膳食持续时间已用于测量动物的非感知与TMJ关节炎38-41,牙髓暴露42,肌肉损伤43。在动物开始进餐后,经历过或非社会性非感知的啮齿动物吃得比较慢。患有TMJ疼痛的患者也需要更长的时间来咀嚼他们的食物,当TMJ疼痛减少44-46时,周期长度缩短。当TMJ疼痛出现时,延长膳食持续时间预计将是一种”保护行为”,在操作上定义为无感性行为47。

膳食持续时间测量TMJ新感,使用非侵入性方法在雄性大鼠和雌性大鼠中长达19天,在雄性小鼠中测量6天(测试时间最长),可称为新药38-41的生物标记。为了支持膳食持续时间测量非感性反应,药理干预可减少非感知,导致动物的膳食持续时间恢复正常38,40,41。当无菌神经元被使用辣椒素摧毁时,这也得到了证实:神经破坏后,动物的膳食持续时间没有增加后,注射CFA到TMJ 40。

以下是关于如何获取和统计分析膳食持续时间数据的协议。

Protocol

在这个模型中,大鼠或老鼠被给予食物和水的脂肪。德克萨斯A&M大学贝勒牙科学院机构动物护理和使用委员会批准了所有的实验协议。下面的特定设置以对称性显示,并专门用于大鼠 TMJ 关节炎模型。小鼠也可以用于这个模型和替代牙痛和肌源性或社会性疼痛动物模型也可以使用42,43。 1. 软件设置 将喂食器单元的动物监视器软件加载到计算机上。 …

Representative Results

膳食持续时间是组织疼痛的行为相关性,膳食持续时间测量已应用于患有TMJ关节炎(图2)和蛀牙的动物(图3)。在一项实验中,大鼠在施用了250毫克高剂量的终审法院后,患有TMJ关节炎,这种治疗导致19天的膳食持续时间显著增加(图2)。注射到每个 TMJ 关节的低剂量 CFA (10 毫克) 仅在 2-3 天52中产生较小的膳食持续时间增加,表明使用此膳食持续…

Discussion

TMJ患者的体痛报告增加疼痛与增加咀嚼时间,这样,咀嚼周期延长越长,个人已经咀嚼45,53-56。我们的行为检测允许在测量膳食持续时间39时对大鼠和小鼠进行类似的测试。最近一项未发表的研究表明,冯弗雷灯丝测试比膳食持续时间测量具有更大的灵敏度,显示较长时间内有显著变化,但冯弗雷灯丝测试可以具有反射反应成分,而膳食持续时间测量需要中枢神经系统区域进行处…

Divulgazioni

The authors have nothing to disclose.

Materials

Animal Monitor software Med Assoc. Inc SOF-710 East Fairfield, VT
Dustless Precision Pellets, Rodent, Grain-Based  Bio-Serv F0165 45 mg pellets, 50,000/box
Dustless Precision Pellets, Rodent, Grain-Based  Bio-Serv FO163 20 mg pellets
Complete Freund's Adjuvant Chondrex, Inc. 7001 No loger provides the 5 mg/ml concentration.  Can use CFA from other sources as long as the investigator consistently uses this source

Riferimenti

  1. Khan, A., Hargreaves, K. M. Animal models of orofacial pain. Methods Mol. Biol. 617, 93-104 (2010).
  2. Fried, K., Sessle, B. J., Devor, M. The paradox of pain from tooth pulp: low-threshold #34;algoneurons#34;. Pain. 152, 2685-2689 (2011).
  3. Vos, B. P., Strassman, A. M., Maciewicz, R. J. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J. Neurosci. 14, 2708-2723 (1994).
  4. Roveroni, R. C., Parada, C. A., Cecilia, M., Veiga, F. A., Tambeli, C. H. Development of a behavioral model of TMJ pain in rats: the TMJ formalin test. Pain. 94, 185-191 (2001).
  5. Botelho, A. P., Gameiro, G. H., Tuma, C. E., Marcondes, F. K., deArruda Veiga, M. C. The effects of acute restraint stress on nociceptive responses evoked by the injection of formalin into the temporomandibular joint of female rats. Stress. 13, 269-275 (2010).
  6. Fischer, L., Arthuri, M. T., Torres-Chavez, K. E., Tambeli, C. H. Contribution of endogenous opioids to gonadal hormones-induced temporomandibular joint antinociception. Behav. Neurosci. 123, 1129-1140 (2009).
  7. Multon, S., et al. Lack of estrogen increases pain in the trigeminal formalin model: a behavioural and immunocytochemical study of transgenic ArKO mice. Pain. 114, 257-265 (2005).
  8. Nag, S., Mokha, S. S. Testosterone is essential for alpha(2)-adrenoceptor-induced antinociception in the trigeminal region of the male rat. Neurosci. Lett. 467, 48-52 (2009).
  9. Cairns, B. E., Sim, Y., Bereiter, D. A., Sessle, B. J., Hu, J. W. Influence of sex on reflex jaw muscle activity evoked from the rat temporomandibular joint. Brain Res. 957, 338-344 (2002).
  10. Schutz, T. C., Andersen, M. L., Silva, A., Tufik, S. Distinct gender-related sleep pattern in an acute model of TMJ pain. J. Dent. Res. 88, 471-476 (2009).
  11. Chattipakorn, S. C., Sigurdsson, A., Light, A. R., Narhi, M., Maixner, W. Trigeminal c-Fos expression and behavioral responses to pulpal inflammation in ferrets. Pain. 99, 61-69 (2002).
  12. Roveroni, R. C., Parada, C. A., Cecilia, M., Veiga, F. A., Tambeli, C. H. Development of a behavioral model of TMJ pain in rats: the TMJ formalin test. Pain. 94, 185-191 (2001).
  13. Chidiac, J. J., et al. Nociceptive behaviour induced by dental application of irritants to rat incisors: a new model for tooth inflammatory pain. Eur. J. Pain. 6, 55-67 (2002).
  14. Chudler, E. H., Byers, M. R. Behavioural responses following tooth injury in rats. Arch. Oral Biol. 50, 333-340 (2005).
  15. Suarez-Roca, H., Quintero, L., Arcaya, J. L., Maixner, W., Rao, S. G. Stress-induced muscle and cutaneous hyperalgesia: differential effect of milnacipran. Physiol. Behav. 88, 82-87 (2006).
  16. Quintero, L., et al. Repeated swim stress increases pain-induced expression of c-Fos in the rat lumbar cord. Brain Res. 965, 259-268 (2003).
  17. Bodnar, R. J., Kordower, J. H., Wallace, M. M., Tamir, H. Stress and morphine analgesia: alterations following p-chlorophenylalanine. Pharmacol. Biochem. Behav. 14, 645-651 (1981).
  18. Von, K. M., Dworkin, S. F., Le, R. L., Kruger, A. An epidemiologic comparison of pain complaints. Pain. 32, 173-183 (1988).
  19. Langford, D. J., et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods. 7, 447-449 (2010).
  20. Yamazaki, Y., Ren, K., Shimada, M., Iwata, K. Modulation of paratrigeminal nociceptive neurons following temporomandibular joint inflammation in rats. Exp. Neurol. 214, 209-218 (2008).
  21. Liverman, C. S., Brown, J. W., Sandhir, R., McCarson, K. E., Berman, N. E. Role of the oestrogen receptors GPR30 and ERalpha in peripheral sensitization: relevance to trigeminal pain disorders in women. Cephalalgia. 29, 729-741 (2009).
  22. Liverman, C. S., et al. Oestrogen increases nociception through ERK activation in the trigeminal ganglion: evidence for a peripheral mechanism of allodynia. Cephalalgia. 29, 520-531 (2009).
  23. Mason, P., Strassman, A., Maciewicz, R. Is the jaw-opening reflex a valid model of pain. Brain Res. 357, 137-146 (1985).
  24. Rajaona, J., Dallel, R., Woda, A. Is electrical stimulation of the rat incisor an appropriate experimental nociceptive stimulus. Exp. Neurol. 93, 291-299 (1986).
  25. Sunakawa, M., Chiang, C. Y., Sessle, B. J., Hu, J. W. Jaw electromyographic activity induced by the application of algesic chemicals to the rat tooth pulp. Pain. 80, 493-501 (1999).
  26. Boucher, Y., Pollin, B., Azerad, J. Microinfusions of excitatory amino acid antagonists into the trigeminal sensory complex antagonize the jaw opening reflex in freely moving rats. Brain Res. 614, 155-163 (1993).
  27. Khan, J., et al. Bite force and pattern measurements for dental pain assessment in the rat. Neurosci. Lett. 447, 175-178 (2008).
  28. Foong, F. W., Satoh, M., Takagi, H. A newly devised reliable method for evaluating analgesic potencies of drugs on trigeminal pain. J. Pharmacol. Methods. 7, 271-278 (1982).
  29. Khan, A. A., et al. Measurement of mechanical allodynia and local anesthetic efficacy in patients with irreversible pulpitis and acute periradicular periodontitis. J. Endod. 33, 796-799 (2007).
  30. Khan, A. A., et al. The development of a diagnostic instrument for the measurement of mechanical allodynia. J. Endod. 33, 663-666 (2007).
  31. Khan, J., et al. Bite force and pattern measurements for dental pain assessment in the rat. Neurosci. Lett. 447, 175-178 (2008).
  32. Neubert, J. K., et al. Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain. 116, 386-395 (2005).
  33. Neubert, J. K., et al. Differentiation between capsaicin-induced allodynia and hyperalgesia using a thermal operant assay. Behav. Brain Res. 170, 308-315 (2006).
  34. Neubert, J. K., et al. Characterization of mouse orofacial pain and the effects of lesioning TRPV1-expressing neurons on operant behavior. Mol. Pain. 4, 43 (2008).
  35. Rossi, H. L., Vierck, C. J., Caudle, R. M., Neubert, J. K. Characterization of cold sensitivity and thermal preference using an operant orofacial assay. Mol. Pain. 2 (37), (2006).
  36. Nolan, T. A., Hester, J., Bokrand-Donatelli, Y., Caudle, R. M., Neubert, J. K. Adaptation of a novel operant orofacial testing system to characterize both mechanical and thermal pain. Behav. Brain. Res. , (2010).
  37. Dolan, J. C., Lam, D. K., Achdjian, S. H., Schmidt, B. L. The dolognawmeter: a novel instrument and assay to quantify nociception in rodent models of orofacial pain. J. Neurosci. Methods. 187, 207-215 (2010).
  38. Kerins, C., Carlson, D., McIntosh, J., Bellinger, L. A role for cyclooxygenase II inhibitors in modulating temporomandibular joint inflammation from a meal pattern analysis perspective. J. Oral Maxillofac. Surg. 62, 989-995 (2004).
  39. Kramer, P. R., Kerins, C. A., Schneiderman, E., Bellinger, L. L. Measuring persistent temporomandibular joint nociception in rats and two mice strains. Physiol. Behav. 99, 669-678 (2010).
  40. Bellinger, L. L., et al. Capsaicin sensitive neurons role in the inflamed TMJ acute nociceptive response of female and male rats. Physiol. Behav. 90, 782-789 (2007).
  41. Kerins, C. A., Spears, R., Bellinger, L. L., Hutchins, B. The prospective use of COX-2 inhibitors for the treatment of temporomandibular joint inflammatory disorders. Int. J. Immunopathol. Pharmacol. 16, 1-9 (2003).
  42. Kramer, P. R., He, J., Puri, J., Bellinger, L. L. A Non-invasive Model for Measuring Nociception after Tooth Pulp Exposure. J. Dent. Res. 91, 883-887 (2012).
  43. Kramer, P. R., Bellinger, L. L. Reduced GABA receptor alpha6 expression in the trigeminal ganglion enhanced myofascial nociceptive response. Neuroscienze. 245C, 1-11 (2013).
  44. Hansdottir, R., Bakke, M. Joint tenderness, jaw opening, chewing velocity, and bite force in patients with temporomandibular joint pain and matched healthy control subjects. J. Orofac. Pain. 18, 108-113 (2004).
  45. Bakke, M., Hansdottir, R. Mandibular function in patients with temporomandibular joint pain: a 3-year follow-up. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106, 227-234 (2008).
  46. Pereira, L. J., Steenks, M. H., de, W. A., Speksnijder, C. M., van Der, B. A. Masticatory function in subacute TMD patients before and after treatment. J. Oral Rehabil. 36, 391-402 (2009).
  47. Sternberg, W. F., Wachterman, M. W., Fillingim, R. B. Ch. 7 Sex, Gender and Pain. Progress in pain research and management. 17, 71-88 (2000).
  48. Castonguay, T. W., Kaiser, L. L., Stern, J. S. Meal pattern analysis: artifacts, assumptions and implications. Brain Res. Bull. 17, 439-443 (1986).
  49. Kerins, C. A., et al. Specificity of meal pattern analysis as an animal model of dermining temporomandibular joint inflammation/pain. Int. J. Oral Maxiollofac. Surg. 34, 425-431 (2005).
  50. Guan, G., Kerins, C. C., Bellinger, L. L., Kramer, P. R. Estrogenic effect on swelling and monocytic receptor expression in an arthritic temporomandibular joint model. J. Steroid Biochem. Mol. Biol. 97, 241-250 (2005).
  51. Kramer, P. R., Bellinger, L. L. The effects of cycling levels of 17β-estradiol and progesterone on the magnitude of temporomandibular joint-induced nociception. Endocrinology. 150, 3680-3689 (2009).
  52. Kerins, C. A., Carlson, D. S., McIntosh, J. E., Bellinger, L. L. Meal pattern changes associated with temporomandibular joint inflammation/pain in rats; analgesic effects. Pharmacol. Biochem. Behav. 75, 181-189 (2003).
  53. Gavish, A., et al. Experimental chewing in myofascial pain patients. J. Orofac. Pain. 16, 22-28 (2002).
  54. Karibe, H., Goddard, G., Gear, R. W. Sex differences in masticatory muscle pain after chewing. J. Dent. Res. 82, 112-116 (2003).
  55. Stegenga, B., de Bont, L. G., Boering, G. Temporomandibular joint pain assessment. J. Orofac. Pain. 7, 23-37 (1993).
  56. Dao, T. T., Lund, J. P., Lavigne, G. J. Pain responses to experimental chewing in myofascial pain patients. J. Dent. Res. 73, 1163-1167 (1994).
  57. Guo, W., et al. Long lasting pain hypersensitivity following ligation of the tendon of the masseter muscle in rats: a model of myogenic orofacial. 6, 40 (2010).
check_url/it/50745?article_type=t

Play Video

Citazione di questo articolo
Kramer, P. R., Bellinger, L. L. Meal Duration as a Measure of Orofacial Nociceptive Responses in Rodents. J. Vis. Exp. (83), e50745, doi:10.3791/50745 (2014).

View Video