Summary

Procedure for udvikling af multi-dybde cirkulære Tværsnit Endothelialized Microchannels-on-a-chip

Published: October 21, 2013
doi:

Summary

En microchannels-on-a-chip platform blev udviklet af en kombination af fotolitografisk reflowable photoresist teknik, blød litografi og mikrofluidik. Den endothelialized microchannels platform efterligner den tredimensionelle (3D) geometri in vivo mikrokar kører under kontrollerede kontinuerlig perfusion flow, giver mulighed for høj kvalitet og real-time scanning, og kan anvendes til microvascular forskning.

Abstract

Indsatsen har været fokuseret på at udvikle in vitro assays til studiet af mikrokar fordi in vivo dyreforsøg er mere tidskrævende, dyrt og observation og kvantificering er meget udfordrende. Imidlertid konventionel in vitro mikrokar assays har begrænsninger, når det repræsenterer in vivo mikrokar med hensyn til tredimensionale (3D) geometri og tilvejebringe kontinuerlig fluidstrømning. Ved hjælp af en kombination af fotolitografisk reflowable photoresist teknik, blød litografi og MicroFluidics, har vi udviklet en multi-dybde cirkulære tværsnit endothelialized microchannels-on-a-chip, som efterligner den 3D-geometri in vivo mikrokar og kører under kontrollerede kontinuerlig perfusion flow. En positiv reflowable fotoresist blev anvendt til at fremstille en master støbeform med et halvcirkelformet tværsnit mikrokanalplade netværk. Ved tilpasning og limning af de to polydimetylsiloxan (PDMS) microchannels REPLlemstore fra master formen blev en cylindrisk mikrokanalplade netværk oprettet. De diametre microchannels kan være velkontrolleret. Desuden viste primære humane navlevene endotelceller (HUVEC'er) podet inde i chippen, at cellerne foret den indvendige overflade af mikrokanaler under kontrollerede perfusion varig i et tidsrum mellem 4 dage til 2 uger.

Introduction

Mikrokar, som en del af cirkulationssystemet, medierer samspillet mellem blod og væv støtte metaboliske aktiviteter, definere væv mikromiljø, og spiller en afgørende rolle i mange sundheds-og patologiske tilstande. Sammenfatning af funktionelle mikrokar in vitro kunne give en platform for studiet af komplekse vaskulære fænomener. Imidlertid konventionel in vitro mikrokar assays, såsom endotelcellemigration assays, endotelceller rørdannelse assays og rotter og mus aortaringen assays, er i stand til at genskabe in vivo mikrokar med hensyn til tredimensionale (3D) geometri og kontinuerlig strøm kontrol 1-8. Undersøgelser af mikrokar anvendelse af dyremodeller og in vivo assays, såsom hornhinde angiogenese assay, kyllingechorioallantoinmembranen membran angiogenese assay, og Matrigel plug assay, er mere tidskrævende, høj i pris, udfordrende med hensyn til observation og kvantificeringer ogrejser etiske spørgsmål 1, 9-13.

Fremskridt i micromanufacturing og mikrofluid chip teknologier har muliggjort en bred vifte af indsigt i biomedicinske videnskaber, mens begrænse de høje eksperimentelle omkostninger og kompleksiteter i forbindelse med dyr og in vivo studier 14, såsom let og stramt kontrollerede biologiske forhold og dynamiske fluidisk miljøer, hvilket ikke ville have været muligt med konventionelle Makroskalaplacering teknikker.

Her præsenterer vi en tilgang til at konstruere en endothelialized microchannels-on-a-chip, som efterligner den 3D-geometri in vivo mikrokar og kører under kontrollerede kontinuerlig perfusion flow ved hjælp af en kombination af fotolitografisk reflowable photoresist teknik, blød litografi og mikrofluidik.

Protocol

1.. Fotolitografi Fabrikation af Fotoresist Master Mold Følgende protokol viser processen for at fremstille de mikrokanaler med diametre på mellem 30-60 um. At få en mikrokanalplade med en mindre diameter (mindre end 30 um), en enkelt spin-coating af fotoresist er nødvendig. Overfør reflow fotoresist fra køleskabet ved 4 ° C til renrummet 24 hr før brug og lad den varme op til stuetemperatur. Rens en siliciumskive og bage det i en time ved 150 ° C for at tillade…

Representative Results

Vores tilgang til at fremstille multi-dybde mikrokanalplade netværk efterligner komplekse 3D geometrier af in vivo mikrokar, hvor mikrokanalerne har afrundede tværsnit 15.. Derudover diametrene af moder forgrenende kanaler og datter kanaler omtrent adlyde Murray lov til opretholdelse af fluidumstrømmen på et krævede niveau, så den samlede kanal modstanden er lav og strømningshastigheder er mere ensartet i hele netværket 16-18. De processer og resultater for fremstilling af en halvc…

Discussion

1.. Master skimmel fabrikation

En af de designe og vejledende principper for vaskulær morfometri er kendt som Murray lov 16, hvor det hedder, at fordelingen af fartøjets diametre hele nettet reguleres af minimum energi overvejelse. Det fastslås også, at terningen af ​​diametre på en forælder fartøj på en tvedeling er lig summen af ​​de terninger af diametre datter fartøjer ( <img alt="Ligning 1" fo:content-width="0.9in" fo:src="/files/ftp_upload/50771/50771eq1….

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Denne forskning blev delvist støttet af National Science Foundation (NSF 1.227.359), WVU EPSCoR program finansieret af National Science Foundation (EPS-1.003.907), WVU ADVANCE kontor sponsoreret af National Science Foundation (1.007.978) og WVU PSCoR hhv. Den microfabrication arbejde blev udført i WVU fælles forskning Faciliteter (renrumsfaciliteter) samt Mikrofluid Integrativ Cellular Forskning i Chip Laboratory (mikrochip Lab) ved West Virginia University. Den konfokal imaging blev udført på WVU Microscope Imaging faciliteten.

Materials

Reagent/Material
Reflow Photoresist AZ Electronic Materials AZP4620
Developer AZ Electronic Materials AZ 400K
PDMS Dow Corning Corporation Sylgard 184
MCDB 131 Culture Medium Invitrogen 10372-019
NacBlue Nuclei Staining Invitrogen H1399
PKH Red Stain Sigma MINI26 and PKH26GL
Fibronectin Gibco PHE0023
L-Glutamine Sigma G7513
Phosphate Buffered Saline Invitrogen 14040-133
HEPES Buffered Saline Solution Lonza CC-5024
Trypsin/EDTA Invitrogen 25300-062
Trypsin Neutralizing Solution Lonza CC-5002
PDMS Curing Agent Dow Corning Corporation Sylgard 184
Primary Human Umbilical Vein Endothelial Cells Lonza CC-2517
Fetal Bovine Serum Lonza 14-501F
Diluent C Sigma CGLDIL
Hoechst33342 Invitrogen, Molecular Probes R37605
Dextran Sigma 95771
3.5% Paraformaldehyde Electron Microscopy Science 15710-S
Equipment
Spinner Laurell Technologies Corporation WS-400BZ-6NPP/LITE
Desiccator BelArt Products 999320237
Inverted Microscope Nikon Eclipse Ti
Syringe Pump System Harvard Apparatus PHD Ultra
Laminar Biosafety Hood Thermo Scientific 1300 Series A2
Planetary Centrifugal Mixer Thinky ARE-310
Isotemp Oven Fisher Scientific 13-246-516GAQ
Optical Microscope Zeiss Invertoskop 40C
Plasma Cleaner Harrick Plasma PDC-32G
Hotplate Barnstead/Thermolyne Cimarec SP131635
Laser Scanning Confocal Microscope Zeiss LSM 510

Riferimenti

  1. Adair, T. H. . Angiogenesis: Integrated systems physiology: from molecule to function to disease. , (2011).
  2. Goodwin, A. M. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc. Res. 74, 172-183 (2007).
  3. Smith, E. J., Staton, C. A. Tubule formation assays. Angiogenesis assays: A critical appraisal of current techniques. , 65-87 (2006).
  4. Nakatsu, M. N., Davis, J. J., Hughes, C. C. W. Optimized fibrin gel bead assay for the study of angiogenesis. J. Vis. Exp. (3), e186 (2007).
  5. Nicosia, R. F., Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab. Invest. 63, 115-122 (1990).
  6. Aplin, A. C., Fogel, E., Zorzi, P., Nicosia, R. F. The aortic ring model of angiogenesis. Methods Enzymol. 443, 119-136 (2008).
  7. Nicosia, R. F. The aortic ring model of angiogenesis: A quarter century of search and discovery. J. Cell. Mol. Med. 13, 4113-4136 (2009).
  8. Griffith, L. G., Swart, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211-224 (2006).
  9. Folkman, J. History of angiogenesis. Angiogenesis: An integrative approach from science to medicine. , (2008).
  10. Auerbach, R., Lewis, R., Shinners, B., Kubai, L., Akhtar, N. Angiogenesis assays: A critical overview. Clin. Chem. 49, 32-40 (2003).
  11. Auerbach, R., Akhtar, N., Lewis, R. L., Shinners, B. L. Angiogenesis assays: Problems and pitfalls. Cancer Metastasis Rev. 19, 167-172 (2000).
  12. Staton, C. A., Reed, M. W., Brown, N. J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195-221 (2009).
  13. Staton, C. A., Stribbling, S. M., et al. Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 85, 233-248 (2004).
  14. Moraes, C., Mehta, G., Lesher-Perez, S. C., Takayama, S. Organs-on-a-Chip: A focus on compartmentalized microdevices. Ann. Biomed. Eng. 40 (6), 1211-1227 (2012).
  15. Huang, Z., Li, X., Martins-Green, M., Liu, Y. Microfabrication cylindrical microfluidic channel networks for microvascular research. Biomedical Microdevices. 14 (5), 873-883 (2012).
  16. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9 (6), 835-841 (1926).
  17. Zamir, M., Medeiros, J. A. Arterial branching in man and monkey. J. Gen. Physiol. 79, 353-360 (1982).
  18. Gafiychuk, V. V., Lubashevsky, I. A. On the principles of the vascular network branching. J. Theor. Biol. 212, 1-9 (2001).
  19. Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78 (4), 431-453 (1981).
  20. Kamiya, A., Bukhari, R., Togawa, T. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol. 46 (1), 127-137 (1984).
  21. LaBarbera, M. Principles of design of fluid transport systems in zoology. Science. 249, 992-1000 (1990).
  22. Emerson, D. R., Cieslicki, K., Gu, X., Barber, R. W. Biomimetic design of microfluidic manifolds based on a generalized Murray’s law. Lab Chip. 6, 447-454 (2006).
  23. Lu, H., Koo, L. Y., et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76, 5257-5264 (2004).
  24. Shevkoplyas, S. S., Gifford, S. C., Yoshida, T., Bitensky, M. W. Prototype of an in vitro model of the microcirculation. Microvasc. Res. 65, 132-136 (2003).
  25. Kaihara, S., Borenstein, J., et al. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng. 6, 105-117 (2000).
  26. Fisher, A. B., Chien, S., Barakat, A. I., Nerem, R. M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 281 (3), L529-L533 (2001).
  27. Nerem, R. M., Alexander, R. W., et al. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316 (3), 169-175 (1998).
  28. Daly, D., Stevens, R. F., Hutley, M. C., Davies, N. The manufacture of microlenses by melting photoresist. Meas. Sci. Technol. 1 (8), 759-766 (1990).
  29. Schilling, A., Merz, R., Ossmann, C., Herzig, H. P. Surface profiles of reflow microlenses under the influence of surface tension and gravity. Opt. Eng. 39 (8), 2171-2176 (2000).
  30. Young, B., Heath, J. W. . Wheater’s functional histology: A text and colour atlas. , (2000).
  31. O’Neill, F. T., Sheridan, J. T. Photoresist reflow method of microlens production. Part 1: Background and experiments. Optik Int. J. Light Electron Opt. 113, 391-404 (2002).
  32. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827-863 (1985).
  33. Elias, H. G. . An Introduction to Polymer Science. , (1997).
  34. Voinov, O. V. Dynamic edge angles of wetting upon spreading of a drop over a solid surface. J. Appl. Mech. Tech. Phys. 40, 86-92 (1999).
  35. Daly, D., Stevens, R. F., Hutley, M. C., Davies, N. The manufacture of microlenses by melting photoresist. Meas. Sci. Technol. 1, 759 (1990).
  36. Jay, T. R., Stern, M. B. Preshaping photoresist for refractive microlens fabrication. Opt. Eng. 33, 3552-3555 (1994).
  37. Nerem, R. M., Alexander, R. W., et al. The Study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316 (3), 169-175 (1998).
  38. Chien, S., Li, S., Shyy, Y. J. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension. 31, 162-169 (1998).
  39. Li, Y. S., Haga, J. H., Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949-1971 (2005).
  40. Lee, E. J., Vunjak-Novakovic, G., Wang, Y., Niklason, L. E. A biocompatible endothelial cell delivery system for in vitro tissue engineering. Cell Transplant. 18, 731-743 (2009).
  41. Lee, E. J., Niklason, L. E. A novel flow bioreactor for in vitro microvascularization. Tissue Eng. Part C Methods. 16, 1191-1200 (2010).
  42. Chau, L., Doran, M., Cooper-White, J. A novel multishear microdevice for studying cell mechanics. Lab Chip. 9, 1897-1902 (2009).
  43. Meeson, A., Palmer, M., Calfon, M., Lang, R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development. 122, 3929-3938 (1996).
  44. Van Royen, N. J., Piek, J., Schaper, W., Bode, C., Buschmann, I. Arteriogenesis: mechanisms and modulation of collateral artery development. J. Nucl. Cardiol. 8, 687-693 (2001).
  45. Schaper, W. Therapeutic arteriogenesis has arrived. Circulation. 104 (17), 1994-1995 (2001).
  46. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovas. Res. 87 (2), 320-330 (2010).
  47. Potter, C. M., Lundberg, M. H., et al. Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms. Arterioscler. Thromb. Vasc Biol. 31, 384-391 (2011).
  48. Montesano, R. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97, 1648-1652 (1983).
  49. Darland, D. C., D’Amore, P. A. TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis. 4 (1), 11-20 (2001).
  50. Lawley, T. J., Kubota, Y. Induction to morphologic differentiation of endothelial cells in culture. J. Invest. Dermatol. 93, 59S-61S (1989).
  51. Kanzawa, S., Endo, H., Shioya, N. Improved in vitro angiogenesis model by collagen density reduction and the use of type III collagen. Ann. Plast. Surg. 30, 244-251 (1993).
  52. Davis, G. E., Bayless, K. J., Mavila, A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268, 252-275 (2002).
  53. Velazquez, O. C., Snyder, R., Liu, Z., Fairman, R. M., Herlyn, M. Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J. 16, 1316-1318 (2002).
  54. Donovan, D., Brown, N. J., Bishop, E. T. Comparison of three in vitro human “angiogenesis” assays with capillaries formed in vivo. Angiogenesis. 4, 113-121 (2001).
  55. Tang, D. G., Conti, C. J. Endothelial cell development, vasculogenesis, angiogenesis, and tumor neovascularization: an update. Semin. Thromb. Hemost. 30, 109-117 (2004).
  56. Takayama, S., McDonald, J. C., et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U.S.A. 96, 5545-5548 (1999).
  57. Cho, B. S., Schuster, T. G., et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671-1675 (2003).
  58. Parsa, H., Upadhyay, R., Sia, S. K. Uncovering the behaviors of individual cells within a multicellular microvascular community. Proc. Natl. Acad. Sci. U.S.A. 108 (12), 5133-5138 (2011).
check_url/it/50771?article_type=t

Play Video

Citazione di questo articolo
Li, X., Mearns, S. M., Martins-Green, M., Liu, Y. Procedure for the Development of Multi-depth Circular Cross-sectional Endothelialized Microchannels-on-a-chip. J. Vis. Exp. (80), e50771, doi:10.3791/50771 (2013).

View Video