Summary

を光学的に検出<em> E.大腸菌の</emメソポーラスケイ素バイオセンサーによる>バクテリア

Published: November 20, 2013
doi:

Summary

迅速な細菌検出用ラベルフリー光学バイオセンサーを導入する。バイオセンサーは、直接的にその表面上に標的細菌の細胞を捕捉するように設計されているナノ多孔質Siに基づいている。私たちは、捕捉プローブとして、多孔質のトランスデューサに固定化モノクローナル抗体を使用しています。我々の研究は、(例えば、細胞溶解など)なし優先検体処理に数分以内に、低濃度の細菌の検出のためのこれらのバイオセンサーの適用可能性を実証する。

Abstract

ナノ多孔質Siに基づくラベルフリー光学バイオセンサーは、モデル微生物として、 大腸菌 K12細菌の迅速な捕捉および検出のために設計されています。研究された試料の前処理なし(細胞溶解などにより必要とされないながら、バイオセンサーは、その表面に標的細菌細胞の直接結合に依存しています。メソポーラスSi薄膜は、バイオセンサの光変換素子として使用される。白色光照明の下では、多孔質層は、その反射率スペクトルでよく解像ファブリ·ペロー干渉縞を表示する。高速フーリエ変換は、単一のピーク反射率データの結果に変換(FFT)を適用する。 FFTピークの強度の変化が監視される。したがって、標的細菌がバイオセンサー表面上に捕獲抗体 – 抗原相互作用を介して、細菌付着の「リアルタイム」の観察を可能にする、FFTのピークの強度における測定可能な変化を誘導する。

ntの ">電気化学的陽極酸化法により製造されたメソポーラスSi膜は、標的細菌に特異的なモノクローナル抗体とコンジュゲートされている。抗体の固定化、免疫活性および特異性を、蛍光標​​識実験により確認されている。バイオセンサーが曝露されると標的細菌は、細胞を直接抗体修飾多孔Si表面上に捕捉され、これらの特異的捕捉のイベントは、バイオセンサーの薄膜光干渉スペクトルの強度変化をもたらす。我々は、これらのバイオセンサ(検出比較的低い細菌濃度を検出することができることを実証時間未満で10 4細胞/ ml)の上限。

Introduction

病原菌の早期かつ正確な識別は、食品や水の安全性、環境モニタリング、およびポイントオブケア診断の1のために極めて重要である。伝統的な微生物学技術は時間がかかり、面倒であり、「リアルタイム」で微生物を検出する能力を欠いているか、実験室環境の外ように、バイオセンサーは、これらの課題2-5を満たすように進化している。

近年では、多孔質Si(PSI)は、センサーやバイオセンサー6月20日の設計のための有望なプラットフォームとして浮上している。過去十年間PSI-ベースの光学センサーやバイオセンサーに関する多くの研究は、21,22を発表た。ナノ構造のPSi層は、典型的には単結晶Siウェハからの電気化学陽極エッチングにより作製される。ナノ材料は、このような大規模な表面と、自由体積など多くの有利な特性を示し、その結果、PSI制御され、調整可能な最適可能な孔の大きさCALの特性10,16。このような光ルミネ8,11と白の光の反射率に基づく干渉7,19などのPSI層の光学特性は、強く、環境条件の影響を受けている。フォトルミネッセンススペクトルの変調として又は反射率スペクトル10の波長シフトとして観察されたフィルムの平均屈折率の変化、多孔質層における結果内でゲスト分子/標的分析物の捕捉。

PSiは、光バイオセンサー技術の広大な革新が、細菌検出6,8,20,23-29ためのPSI-ベースのプラットフォームでのみ報告は少ない。さらに、これらの概念実証研究のほとんどは、「間接的」細菌検出を実証した。したがって、細胞の溶解は、一般的に従来検討細菌に特徴的な29、標的タンパク質/ DNA断片を抽出するために必要とされる。我々のアプローチを直接標的細菌を捕捉することであるのPSIバイオセンサーへの細胞。したがって、細菌を標的とする特異的であるモノクローナル抗体は、多孔質表面上に固定化される。抗体-抗原相互作用を介して、細菌細胞の結合は、バイオセンサーの表面に反射率スペクトル24-26の振幅(強度)の変化を誘導する。

本研究では、光PSI-ベースのバイオセンサーの構築に報告し、 大腸菌の検出(モデル微生物として使用される)( 大腸菌 )K12菌用のラベルフリーバイオセンシングプラットフォームとしての用途を示しています。監視対象光信号は、光によるファブリペロー薄膜干渉( 図1A)へのPSiナノ構造からの反射である。光振幅/強度の変化は、細菌の迅速な検出および定量を可能にする、バイオセンサー表面上に標的細菌細胞の特異的な固定化に相関している。

Protocol

1。酸化された多孔性のSiO 2の調製定電流で30秒間水性HFおよび無水エタノールの3:1(v / v)の溶液中でエッチングSiウエハ(片面が<100>面に研磨し、高濃度にドープされたp型、0.0008Ω·cm)で385ミリアンペア/ cm 2の密度。 HFは腐食性の高い液体であり、それは、細心の注意を払って処理する必要がありますのでご注意ください。 無水エタノールで得られた多孔?…

Representative Results

プロトコルのテキストセクションに記載したように酸化されたPSi(PSIO 2)膜が調製される。 図1Bは、熱酸化後に得られたPSi膜の高分解能走査電子顕微鏡写真を示す。 PSIO 2層は30〜500nmの範囲の直径を有する明確に定義された円筒状の細孔によって特徴付けられる。 モノクローナル抗体(IgG)の分子は、ビオチン-SAシステムと結合された十分に…

Discussion

PSIO 2ナノ構造(ファブリペロー薄膜)に基づくラベルフリー光学免疫センサーは、製造されており、細菌検出用バイオセンサーとしての適用可能性が確認された。

修正とトラブルシューティング

免疫センサの設計の主要な関心事の一つは、バイオセンサの感度31,32の低下につながる可能性固体基板上に堆積及びパターニング中の望まし…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

この作品は、イスラエル科学財団(助成番号1118から1108と認可番号1146から1112年)と、みんなのクロール記念研究基金によってサポートされていました。 ESは感謝ラッセルBerrieのナノテクノロジー研究所の財政支援を認めるものです。

Materials

Name of Reagent/Material Company Catalog Number Comments
Si wafer Siltronix Corp. Highly-B-doped, p-type, 0.0008 Ω-cm resistivity, <100> oriented
Aqueous HF (48%) Merck 101513
Ethanol absolute Merck 818760
PBS buffer solution (pH 7.4) prepared by dissolving 50 mM Na2HPO4, 17 mM NaH2PO4, and 68 mM NaCl in Milli-Q water (18.2 MΩ)
Saline 0.85% w/v prepared by dissolving 0.85 g NaCl in 100 ml Milli-Q water (18.2 MΩ)
95% (3-Mercaptopropyl)trimethoxysilane (MPTS) Sigma Aldrich Chemicals 175617
PEO-iodoacetyl biotin Sigma Aldrich Chemicals B2059
Streptavidin (SA) Jackson ImmunoResearch Labs Inc. 016-000-114
Fluorescein (DTAF)-streptavidin Jackson ImmunoResearch Labs Inc. 016-010-084
Biotinylated-rabbit IgG Jackson ImmunoResearch Labs Inc. 011-060-003
Fluorescently tagged anti-rabbit IgG Jackson ImmunoResearch Labs Inc. 111-095-003
Fluorescently tagged anti-mouse IgG Jackson ImmunoResearch Labs Inc. 115-095-003
Biotinylated E. coli antibody Jackson ImmunoResearch Labs Inc. 1007
E. coli (K-12) was generously supplied by Prof. Sima Yaron, Technion

Riferimenti

  1. Velusamy, V., et al. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28 (2), 232-23 (2010).
  2. Doyle, M. P., Beuchat, L. R., Montville, T. J. . Food Microbiol.: Fundamentals and Front. 2, (2001).
  3. Radke, S. M., Alocilja, E. C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens. J. 5 (4), 744 (2005).
  4. Glynn, B., et al. Current and emerging molecular diagnostic technologies applicable to bacterial food safety. Int. J. of Dairy Technol. 59 (2), 126 (2006).
  5. Leonard, P., et al. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 32 (1), 3 (2003).
  6. Alvarez, S. D., et al. Using a porous silicon photonic crystal for bacterial cell-based biosensing. Physica Status Solidi a-Applications and Materials Science. 204 (5), 1439 (2007).
  7. Archer, M., et al. Electrical porous silicon microarray for DNA hybridization detection. Micro- and Nanosystems. 782, 385 (2004).
  8. Chan, S., Horner, S. R., Fauchet, P. M., Miller, B. L. Identification of Gram Negative Bacteria Using Nanoscale Silicon Microcavities. J. Am. Chem. Soc. 123, 11797 (2001).
  9. Dancil, K. -. P. S., Greiner, D. P., Sailor, M. J., Canham, L. T., Sailor, M. J., Tanaka, K., Tsai, C. C. . Development of a Porous Silicon Based Biosensor. 536, 557-562 (1999).
  10. D’Auria, S., et al. Nanostructured silicon-based biosensors for the selective identification of analytes of social interest. J Phys – Condens Matter. 18 (33), S2019 (2006).
  11. de Leon, S. B., et al. Neurons culturing and biophotonic sensing using porous silicon. Appl Phys Lett. 84 (22), 4361 (2004).
  12. Janshoff, A., et al. Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120 (46), 12108 (1998).
  13. Orosco, M. M., Pacholski, C., Miskelly, G. M., Sailor, M. J. Protein-coated porous silicon photonic crystals for amplified optical detection of protease activity. Adv. Mater. 18, 1393 (2006).
  14. Pacholski, C., et al. Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 127 (33), 11636 (2005).
  15. Pacholski, C., et al. Reflective Interferometric Fourier Transform Spectroscopy: A Self-Compensating Label-Free Immunosensor Using Double-layers of Porous SiO2. J. Am. Chem. Soc. 128, 4250 (2006).
  16. Sailor, M. J., Link, J. R. Smart Dust: nanostructured devices in a grain of sand. Chem. Comm. , 1375 (2005).
  17. Schwartz, M. P., Alvarez, S. D., Sailor, M. J. Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: Binding of protein a to immunoglobulins derived from different species. Anal. Chem. 79 (1), 327 (2007).
  18. Schwartz, M. i. c. h. a. e. l. P., et al. The smart petri dish: A nanostructured photonic crystal for real-time monitoring of living cells. Langmuir. 22, 7084 (2006).
  19. Stewart, M. P., Buriak, J. M. Chemical and biological applications of porous silicon technology. Adv. Mater. 12 (12), 859 (2000).
  20. Zhang, D., Alocilja, E. C. Characterization of nanoporous silicon-based DNA biosensor for the detection of Salmonella enteritidis. IEEE Sens J. 8 (5-6), 775 (2008).
  21. Bonanno, L. M., Segal, E. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine. 6 (10), 1755 (2011).
  22. Jane, A., Dronov, R., Hodges, A., Voelcker, N. H. Porous silicon biosensors on the advance. Trends Biotechnol. 27 (4), 230 (2009).
  23. Li, S., Huang, J., Cai, L. A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology. 22 (42), 425502 (2011).
  24. Massad-Ivanir, N., Shtenberg, G., Segal, E., Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. . Nano Bio-Technology for Biomedical and Diagnostics Research. 733, (2012).
  25. Massad-Ivanir, N., et al. Engineering Nanostructured Porous SiO2 Surfaces for Bacteria Detection via “Direct Cell Capture”. Anal. Chem. 83 (9), 3282-32 (2011).
  26. Massad-Ivanir, N., Shtenberg, G., Zeidman, T., Segal, E. Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater. 20 (14), 2269-22 (2010).
  27. Mathew, F. P., Alocilja, E. C. Porous silicon-based biosensor for pathogen detection. Biosens. Bioelectron. 20 (8), 1656 (2005).
  28. Ouyang, H., Archer, M., Fauchet, P. M. . Frontiers in Surface Nanophotonics. 133, 49 (2007).
  29. Ouyang, H., DeLouise, L. A., Miller, B. L., Fauchet, P. M. Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors. Anal. Chem. 79 (4), 1502-15 (2007).
  30. Hermanson, G. T. . Bioconjugate Techniques. , (1996).
  31. Piervincenzi, R. T., Reichert, W. M., Hellinga, H. W. Genetic engineering of a single-chain antibody fragment for surface immobilization in an optical biosensor. Biosensors and Bioelectronics. 13 (3-4), 305 (1998).
  32. Saerens, D., Huang, L., Bonroy, K., Muyldermans, S. Antibody Fragments as Probe in Biosensor Development. Sensors. 8 (8), 4669 (2008).
  33. Shtenberg, G., et al. Picking up the Pieces: A Generic Porous Si Biosensor for Probing the Proteolytic Products of Enzymes. Anal. Chem. 85 (3), 1951 (2013).
  34. Bonanno, L. M., DeLouise, L. A. Steric Crowding Effects on Target Detection in an Affinity Biosensor. Langmuir. 23 (10), 5817 (2007).
  35. Banada, P. P., Bhunia, A. K., Mohammed, E., Zourob, S., Turner, A. P. F. . Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 567 (2008).
  36. Poma, A., Whitcombe, M., Piletsky, S., Whitcombe, M. J., Piletsky, S. A. . Designing receptores for the next generation of biosensors. , 105 (2013).
  37. Dudak, F. C., Boyaci, I. H. Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res. Int. 40 (7), 803 (2007).
  38. Dudak, F. C., Boyaci, I. H. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechn J. 4 (7), 1003 (2009).
  39. Skottrup, P. D., Nicolaisen, M., Justesen, A. F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 24 (3), 339 (2008).
  40. Taylor, A. D., Ladd, J., Homola, J., Jiang, S. . Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 83 (2008).
check_url/it/50805?article_type=t

Play Video

Citazione di questo articolo
Massad-Ivanir, N., Shtenberg, G., Segal, E. Optical Detection of E. coli Bacteria by Mesoporous Silicon Biosensors. J. Vis. Exp. (81), e50805, doi:10.3791/50805 (2013).

View Video