Summary

评估肌反应及血管活性阻力肠系膜动脉使用压力肌动描记

Published: July 06, 2015
doi:

Summary

压力肌动描记用于评估小动脉的持续发展压力收缩时血管活性。这份手稿提供了一个详细的协议在小肠系膜动脉大鼠,血管活性和腔内压力对血管直径的影响隔离段评估。

Abstract

阻力小动脉收缩,并分别以响应增加或减少腔内压力扩张;这种现象被称为肌源性反应是局部血流量的重要调节器。在等压条件下阻力小动脉持续养成收缩称为肌音(MT),这是全身血管阻力(SVR)的主要决定因素。因此,阻力小动脉体外加压制剂的主要工具来研究微血管功能在近生理状态。为了实现这一目标,一个小的阻力动脉(直径〜260微米)的新鲜分离的完好分段被安装到两个小玻璃套管并加压。这些动脉制剂保留大部分体内特性和血管张力的实时许可证评估。在这里,我们为评估在大鼠加压阻力小肠系膜动脉血管活性详细的协议;这些动脉开发持续的血管收缩 – 最大直径的约25% – 当在70毫米汞柱压力。这些动脉制剂可用于研究研究化合物对动脉内压力和血管活性之间关系的影响,并确定在各种疾病的动物模型的改变微血管功能。

Introduction

小阻力动脉是SVR的主要决定因素,并在许多疾病1,2的病理生理学中发挥重要作用。条件如糖尿病3,妊娠4,缺血再灌注5,肥胖和高血压6,7-经常与改变微血管功能相关联。血管肌动描记不仅可以提供重要的见解在各种疾病中的变化微血管功能也有助于确定治疗目标和评估血管活性化合物的功效。血管的功能已经被使用等距或等压容器的条件下,8孤立的小动脉的影响。等距肌动描记的详细描述在其他地方提供了9。不过,也有来自等距获得与等压制剂10-12数据的差异。因为加压动脉制剂允许微血管功能的研究在近生理条件下,该得到的结果可能会与相关的血管床8,13 体内的行为更好。

1902年,拜里斯首次描述血管直径14透压力的影响。他观察到在从兔,猫,狗的各种血管床中压力的降低随后的血管舒张小阻力动脉,并增加了压力,随后由血管收缩。这种现象被称为肌应答。贝利斯和随后的调查发现,在等压条件下阻力小动脉持续发展的收缩称为MT 15,16。既生肌响应和MT可以通过使用压力肌动描记(PM)的技术进行评估。 PM主要用于确定小动脉,静脉等血管血管活性。除了评估血管直径血管活性化合物的作用,PM – 顾名思义 – 用来评估血管内压力介导的CH安格斯对血管的直径。在过去的几十年中前进在计算机软件,这增强视频显微镜和玻璃吸管拉动,取得了下午更容易执行。然而,小血管存活完好分段解剖仍然繁琐,有时具有挑战性。在这里,我们勾勒出一个详细的协议,以研究在小肠系膜动脉阻力来自大鼠分离生肌响应。

Protocol

这里显示的例子是来自佐治亚大学校务经IACUC实验 – 协议编号:#2011-0408 1.准备试剂准备剥离液货:500毫升股票清扫液(5倍),溶解21.18克氯化钠,0.875克氯化钾,0.739克硫酸镁 ,1.049克MOPS和450毫升的Milli-Q水0.019克EDTA。调节pH至7.3-7.4用1N NaOH洗涤。补足体积至500ml用Milli-Q水。原液可以存储多达7-10天。请参考表1化学品及其供应商的列表。 见表2…

Representative Results

一个典型的压力肌动描记设置示意图示于图1。将容器的两端插管用玻璃微并固定在两侧的缝合线。通过管道和开口旋塞,一个插管连接至伺服控制压力调节器;另一个套管连接到一个封闭的活栓。腔灌注有通过倒置显微镜相连的CCD摄像机观察PSS和血管直径的变化。 加压,在70毫米汞柱的动脉区段孵育在新鲜制备的温暖的PSS,流经动脉腔在2-4毫升/分钟,吸出。动脉?…

Discussion

关键步骤,故障排除和修改

在典型的等压容器的准备,动脉被加压至灌注用温水(37℃)的PSS两个玻璃插管之间70毫米汞柱。后30-45分钟,动脉开发MT,其特征在于,稳定在20-30分钟的直径自发下降。从各种血管床的阻力动脉开发可变MT。例如大鼠阻力肠系膜动脉开发的MT〜PD的25%,而cremastric动脉可能实现的PD的MT〜40%。动脉没有在60分钟内开发MT应该被丢弃;这个持续时间可以根据…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

桑迪普库拉纳是由美国国立卫生研究院(K08DKO81479)的支持。维克兰特Rachakonda由(T32DK067872)的支持。

Materials

Chemical
Acetylcholine Sigma Aldrich A6625
Calcium chloride (CaCl2) Sigma Aldrich 223506
D-(+)-Glucose Sigma Aldrich G5767
Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetra acetic acid (EGTA) Sigma Aldrich E3889
Ethylene diamine tetra acetic acid (EDTA) Sigma Aldrich E9884
HEPES Sigma Aldrich H3784
Magnesium sulfate (MgSO4) Sigma Aldrich M7506
MOPS Sigma Aldrich M5162
Phenylephrine Sigma Aldrich P6126
Potassium chloride (KCl) Sigma Aldrich P3911
Potassium phosphate (KH2PO4) Sigma Aldrich P5655
Sodium bicarbonate (NaHCO3 ) Sigma Aldrich S6014
Sodium chloride (NaCl) Sigma Aldrich S7653
Sodium hydroxide (NaOH) Sigma Aldrich S5881
Sodium nitroprusside Sigma Aldrich 13451
Sodium phosphate monobasic monohydrate (NaH2PO4) Sigma Aldrich S9638
Sodium pyruvate Sigma Aldrich P8574
Table 1.
Physiological salt solution (1000 ml) mM
KCl 4.9 0.365 g
NaCl 112 6.545 g
MgSO4.7H2O 1.2 0.296 g
KH2PO4 1.2 0.163 g
Glucose 11.5 2.072 g
NaHCO3 26 2.184 g
HEPES 10 2.383 g
CaCl2 2 2 ml (1M stock)
De-ionized water 998 ml
Ca2+ free physiological salt solution (100 ml) mM
KCl 4.9 0.036 g
NaCl 112 0.645 g
MgSO4.7H2O 1.2 0.029 g
KH2PO4 1.2 0.016 g
Glucose 11.5 0.207 g
NaHCO3 26 0.218 g
HEPES 10 0.238 g
EGTA 0.39 0.015 g
Sodium nitroprusside 0.1 0.0026 g
De-ionized water 100 ml
Dissection solution, stock (500 ml) mM
NaCl 145 21.18 g
KCl 4.7 0.875 g
MgSO4 1.2 0.739 g
MOPS 2 1.049 g
EDTA 0.02 0.019 g
De-ionized water 500 ml
Working dissection solution (100 ml) mM
Dissection solution stock 20 ml
Glucose 1.2 0.091 g
NaH2PO4 5 0.016 g
Sodium pyruvate 2 0.022 g
CaCl2 2 0.2 ml (1M stock)
De-ionized water 79.8 ml
Table 2. Composition of Experimetnal solutions
Equipment
CCD Monochrome Camera The imaging Source DMK 21AU04
Single inline solution heater Warner Instruments 64-0102
Thermistor Warner Instruments 64-0108
Dual automatic temperature controller Warner Instruments TC-344B
Flaming/Brown micropipette puller Sutter Instruments P-97
Fluorescence System Interface IonOptix model FSI-700
Forceps and scissors World Precision Instruments
Ion Wizard-Core and Analysis IonOptix Ion Wizard 6.0
Laboratory tubing Silastic 508-005
Male Sprague Dawley rat Harlan Laboratories
Master flex console drive Cole-parmer
Milli-Q Plus Ultrapure Water System Millipore ZD5211584
Ophthalmic monofilament nylon suture Ethicon 9007G
Photometry and Dimensioning Microscope Motic AE31
Pressure Servo Controller with peristaltic pump and pressure transducer Living Systems Instrumentation PS-200
Stereomicroscope Nikon Instruments Inc SMZ660
Vessel Chamber Living Systems Instrumentation CH-1
Dissection dish Living Systems Instrumentation DD-90-S
Thin Wall Glass Capillaries World Precision Instruments TW120-6
Microforge Stoelting 51550
Table 3.

Riferimenti

  1. Christensen, K. L., Mulvany, M. J. Location of resistance arteries. J Vasc Res. 38, 1-12 (2001).
  2. Rietzschel, E. R. Oxidized low-density lipoprotein cholesterol is associated with decreases in cardiac function independent of vascular alterations. Hypertension. 52, 535-541 (2008).
  3. Hill, M. A., Ege, E. A. Active and passive mechanical properties of isolated arterioles from STZ-induced diabetic rats. Effect of aminoguanidine treatment. Diabetes. 43, 1450-1456 (1994).
  4. Osol, G., Cipolla, M. Interaction of myogenic and adrenergic mechanisms in isolated, pressurized uterine radial arteries from late-pregnant and nonpregnant rats. Am J Obstet Gynecol. 168, 697-705 (1993).
  5. Cipolla, M. J., McCall, A. L., Lessov, N., Porter, J. M. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 28, 176-180 (1997).
  6. Ren, Y., et al. Enhanced myogenic response in the afferent arteriole of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 298, H1769-H1775 (2010).
  7. Hayashi, K., Epstein, M., Saruta, T. Altered myogenic responsiveness of the renal microvasculature in experimental hypertension. J Hypertens. 14, 1387-1401 (1996).
  8. Schubert, R., Mulvany, M. J. The myogenic response: established facts and attractive hypotheses. Clin Sci (Lond). 96, 313-326 (1999).
  9. Bridges, L. E., Williams, C. L., Pointer, M. A., Awumey, E. M. Mesenteric artery contraction and relaxation studies using automated wire myography. J Vis Exp. , (2011).
  10. Buus, N. H., Vanbavel, E., Mulvany, M. J. Differences in Sensitivity of Rat Mesenteric Small Arteries to Agonists When Studied as Ring Preparations or as Cannulated Preparations. British Journal of Pharmacology. 112, 579-587 (1994).
  11. Falloon, B. J., Stephens, N., Tulip, J. R., Heagerty, A. M. Comparison of small artery sensitivity and morphology in pressurized and wire-mounted preparations. Am J Physiol. 268, H670-H678 (1995).
  12. Schubert, R., Wesselman, J. P. M., Nilsson, H., Mulvany, M. J. Noradrenaline-induced depolarization is smaller in isobaric compared to isometric preparations of rat mesenteric small arteries. Pflugers Archiv-European Journal of Physiology. 431, 794-796 (1996).
  13. Khurana, S., Raina, H., Pappas, V., Raufman, J. P., Pallone, T. L. Effects of deoxycholylglycine, a conjugated secondary bile acid, on myogenic tone and agonist-induced contraction in rat resistance arteries. PLoS One. 7, e32006 (2012).
  14. Bayliss, W. M. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 28, 220-231 (1902).
  15. Hughes, J. M., Bund, S. J. Arterial myogenic properties of the spontaneously hypertensive rat. Exp Physiol. 87, 527-534 (2002).
  16. Mulvany, M. J., Halpern, W. Mechanical properties of vascular smooth muscle cells in situ. Nature. 260, 617-619 (1976).
  17. Raina, H., Zacharia, J., Li, M., Wier, W. G. Activation by Ca2+/calmodulin of an exogenous myosin light chain kinase in mouse arteries. J Physiol. 587, 2599-2612 (2009).
  18. Fenger-Gron, J., Mulvany, M. J., Christensen, K. L. Mesenteric blood pressure profile of conscious, freely moving rats. J Physiol. 488 (Pt 3), 753-760 (1995).
  19. Davis, M. J., Hill, M. A. Signaling mechanisms underlying the vascular myogenic response). Physiol Rev. 79, 387-423 (1999).
  20. Osmond, J. M., Mintz, J. D., Dalton, B., Stepp, D. W. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension. 53, 381-386 (2009).
  21. Ge, Y., et al. Endogenously produced 20-HETE modulates myogenic and TGF response in microperfused afferent arterioles. Prostaglandins Other Lipid Mediat. 102-103, 42-48 (2013).
  22. Ryan, M. J., et al. Placental ischemia impairs middle cerebral artery myogenic responses in the pregnant rat. Hypertension. 58, 1126-1131 (2011).
  23. Bagi, Z., et al. Type 2 diabetic mice have increased arteriolar tone and blood pressure: enhanced release of COX-2-derived constrictor prostaglandins. Arterioscler Thromb Vasc Biol. 25, 1610-1616 (2005).
check_url/it/50997?article_type=t

Play Video

Citazione di questo articolo
Jadeja, R. N., Rachakonda, V., Bagi, Z., Khurana, S. Assessing Myogenic Response and Vasoactivity In Resistance Mesenteric Arteries Using Pressure Myography. J. Vis. Exp. (101), e50997, doi:10.3791/50997 (2015).

View Video