Summary

小脳顆粒ニューロンの遺伝子操作<em>体外</em>と<em>インビボ</em>ニューロンの形態と移行を研究するために、

Published: March 17, 2014
doi:

Summary

神経細胞の形態形成および移行が適切な脳の発達の基礎となる重要なイベントです。ここでは、遺伝的に培養した小脳顆粒ニューロンおよび形態や神経細胞の遊走特性の評価のための開発小脳を操作する方法を説明します。

Abstract

神経細胞の形態形成および移行を含む脳の発達のイベントは、高度のプロセスを組織化している。、in vitroおよびin vivoでこれらのイベントに関与する経路を特定するために、詳細な特性評価を可能に分析しています。現像小脳に由来する小脳顆粒ニューロン(CGNを)は、形態学的分析を可能にする理想的なモデル系である。ここでは、遺伝的にCGNを操作する方法の方法とどのように個々のニューロンの軸索と樹状突起を研究するについて説明します。この方法ではRNA干渉、過剰発現または低分子の効果は、ニューロンを制御するために比較することができる。また、齧歯類小脳皮質は、その支配的な出生後の発達により、生体システムにおいて簡単にアクセスできます。我々はまた、遺伝的に開発小脳を操作し、その後の小脳を記述するために、生体内エレクトロポレーション法を提示すると、神経形態aを評価するために分析し、ND移行。

Introduction

小脳は、軸索の成長と移動のメカニズムを研究するための優れたシステムです。小脳は、脳科学1の黎明期から解剖学の研究の対象となっている。現代の顕微鏡検査および免疫組織化学的技術が大幅に拡大し、サンティアゴ、ラモン、およびカハール2-4初期の発見に磨きをかけてきました。マウス遺伝学と分子の研究では、小脳顆粒ニューロン(CGNを)5-7を含むニューロンの様々なタイプの適切な配線に必要な重要なイベントのより深い理解につながった、小脳発生の制御に必須の増殖および転写因子を発見した。

小脳は、途上後脳8のrhombomere 1の誘導体である。で最も多くニューロン集団を構成する4 番目の心室の屋根の一部である菱形リップ、小脳顆粒ニューロン前駆細胞を生じさせる、大人の小脳9。吻側移行後、彼らは小脳原基に定住。ここで、顆粒ニューロン前駆体の有糸分裂は、げっ歯類において出生後に行われる外顆粒層(EGL)の劇的な拡大をもたらす。 EGLから、神経細胞は、最終的には、内部顆粒層(IGL 2)に居を取るためにプルキンエ細胞層を越えて、分子層(ML)を介して内側への移行を開始。この渡り鳥プロセスの間に、彼らは、ML内に延びる2軸索を有するバイポーラ形を獲得する。さらに、移行の際に、細胞体、軸索から離れて移動し、二つのプロセスは、一分岐した、T字型の軸索10を形成するために融合。その後、これらの軸索は束生のと平行線維と呼ばれている。 IGLに定住した、CGNをは苔状線維とシナプスを確立するために、樹枝状の爪を形成する樹状突起を、育つ。開発小脳において基本的なプロセスを検討するために、in vitroおよびin vivo approac 組み合わせるHは、信頼性の高い結果と結論することができます。

CGNを、小脳のが、脳全体の中で最も数多くの神経細胞であるだけでなく、高純度11月13日に培養することができる。文化では、この非常に均質なニューロン集団は、急速に分裂後になり、容易に識別軸索と樹状突起を有する極性形態を獲得する。培養されたCGNを、前駆増殖、分化、軸索および樹状突起の発達、神経細胞遊走、アポトーシスおよび電気生理学的特性(14-19および多くの他)を含む神経発達の様々な側面を研究することは非常に有用であることが証明されている。遺伝子操作の使用は、培養たCGNの汎用性を拡大し、前述のイベントへのさらなる機械論的な洞察を可能にした。極性マーカーまたはソフトウェアでサポートされている解析設備などで免疫細胞化学、続いて低効率リン酸カルシウムまたは親油性の方法を用いて培養されたニューロンのトランスフェクション密な神経細胞培養液中の個々のニューロンの形態学などの評価をtates。このアプローチでは、軸索または樹状突起成長中の目的のタンパク質の役割は20-25,26-28を研究することができる。移行は、高密度培養では非常に限られており、共培養を必要とするので、この培養系は、しかしながら、ニューロン移動を分析するあまり有用である。軸索と樹状突起成長のインビトロ分析も過剰発現または小分子、RNA干渉(i)の組合せを使用してシグナル伝達経路の相互接続されたタンパク質の調査を可能にする。

軸索と樹状突起の成長制御やニューロン移動における目的のタンパク質の関連性を確立するために、in vivoでのエレクトロポレーション(IVE)技術が発達小脳皮質での分析を可能にする。げっ歯類における小脳開発は最初の2週間、生後に道を拡張するという事実のために、小脳はaccessibを表し軸索と樹状突起、ニューロン移動、シナプス形成およびアポトーシス20-24,29,30,26,27,31-34の開発検討する遺伝子操作のためのル·脳構造。また、このモデル系はまた、軸索経路探索、配線と合わせて考えると、ニューロンとニューロン-グリア相互作用の接続などそのまま小脳皮質を必要とする神経発達の他の側面に有用であり、このプロトコルは、in vitroおよびin vivo技術は取り組むため提供して神経細胞の形態形成および移行に関する補完的なアプローチ。

Protocol

CGNをいずれか生後(P)5仔マウスまたはP6仔ラットから調製することができる。私たちは、有糸分裂後CGNを13を選択するために、有糸分裂阻害剤を使用していますBilimoriaらによって記述されたプロトコルを、従ってください。 倫理声明: 生きた動物を含むすべての実験は、ニーダーザクセン州、ドイツの「VerbraucherschutzウントLebensmittelsicherheit」で承認された?…

Representative Results

上記のように、異なる培養条件に応答したCGNの形態を分析するために、我々は、DIV 0でニューロンをトランスフェクトした。トランスフェクションの後、我々は完全培地(BME、10%ウシ血清、2mMのPSG、25のKCl)および最小培地を含有するインスリンへの別のセット(BME、25mMグルコース、2mMのPSG、10μgの/への神経細胞の一組に配置mlのインスリン)。私たちは、ディビジョン1、2のGFP抗体を用い?…

Discussion

利点およびインビトロおよびインビボ方法記載の制限:

マウスやラットから培養CGNを、形態学的分析のために均等に適しています。ラットの小脳の大きいサイズのために、仔ラットからCNGSの収率は、仔マウス3〜4倍のそれを超えています。 CGNを脇から、皮質及び海馬ニューロンは、同様に培養系として使用することができる。リン酸カルシウム法?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

私たちは、統計分析のヘルプについては、優れた技術支援のために-80ハンマーとS. PapiolをN. Schwedhelm-Domeyerに感謝します。私たちの仕事は、ドイツ学術振興、ナノスケール顕微鏡のためのセンター、脳の分子生理学(CNMPB)、ゲッティンゲン、ドイツ、ゲッティンゲン大学のGGNBジュニアグループ奨学金により、マックス·プランク協会によって資金を供給される。

Materials

DMEM Gibco 11960-044
BME Gibco 41010-026
Insulin Sigma-Aldrich Si-1-4011
Poly-L-Ornithine Sigma-Aldrich P-2533
CaCl2 Appli-Chem A3652
Isofluorane Actavis Deutschland
Tissue-Tek OCT Sakura
Material Name Company Catalogue Number Comments (optional)
ECM 830 and tweezertrodes Harvard Apparatus
Epifluorescence microscope and camera Nikon
SP2 confocal microscope Leica
ImageJ NIH
Imaris 7.4.2 Bitplane, Inc.
GraphPad Prism GraphPad Software, Inc.
MS Excel Microsoft
Loading tip 1-200 µl Costar 4853
Pipette tip 200 µl Sarstedt 70.760.502
Microlance 3 needle, 30 gauge BD 302200
50 µl gastight Syringe 1705 Hamilton
Glass coverslips  Thermo Scientific Menzel Glaeser CB00120RA1

Riferimenti

  1. Cajal, S. R. . Histology of the nervous system of man and vertebrates. , (1995).
  2. Altman, J., Bayer, S. A. . Development of the cerebellar system : in relation to its evolution, structure, and functions. , (1997).
  3. White, J. J., Reeber, S. L., Hawkes, R., Sillitoe, R. V. Wholemount immunohistochemistry for revealing complex brain topography. J. Vis. Exp. , (2012).
  4. Palay, S. L., Chan-Palay, V. . Cerebellar cortex: cytology and organization. , (1974).
  5. Hatten, M. E., Alder, J., Zimmerman, K., Heintz, N. Genes involved in cerebellar cell specification and differentiation. Curr. Opin. Neurobiol. 7, 40-47 (1997).
  6. Hatten, M. E., Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci. 18, 385-408 (1995).
  7. Sillitoe, R. V., Joyner, A. L. Morphology molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Ann. Rev. Dev. Biol. 23, 549-577 (2007).
  8. Zervas, M., Millet, S., Ahn, S., Joyner, A. L. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron. 43, 345-357 (2004).
  9. Wingate, R. J. The rhombic lip and early cerebellar development. Curr. Opin. Neurobiol. 11, 82-88 (2001).
  10. Kawaji, K., Umeshima, H., Eiraku, M., Hirano, T., Kengaku, M. Dual phases of migration of cerebellar granule cells guided by axonal and dendritic leading processes. Mol. Cell Neurosci. 25, 228-240 (2004).
  11. Hatten, M. E., Gao, W. -. Q., Morrison, M. E., Mason, C. A. Cellular and molecular neuroscience. , 419-41 .
  12. Lee, H. Y., Greene, L. A., Mason, C. A., Manzini, M. C. Isolation and culture of post-natal mouse cerebellar granule neuron progenitor cells and neurons. J. Vis. Exp. , (2009).
  13. Bilimoria, P. M., Bonni, A. Cultures of cerebellar granule neurons. CSH Protoc. 2008, (2008).
  14. Rivas, R. J., Hatten, M. E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981-989 (1995).
  15. Kuhar, S. G., et al. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development. 117, 97-104 (1993).
  16. Baird, D. H., Hatten, M. E., Mason, C. A. Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro. J. Neurosci. 12, 619-634 (1992).
  17. Segal, R. A., Pomeroy, S. L., Stiles, C. D. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J. Neurosci. 15, 4970-4981 (1995).
  18. Gallo, V., Ciotti, M. T., Coletti, A., Aloisi, F., Levi, G. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. U.S.A. 79, 7919-7923 (1982).
  19. Smith, T. C., Wang, L. Y., Howe, J. R. Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells. Physiol. 517 (1), 51-58 (1999).
  20. Konishi, Y., Stegmuller, J., Matsuda, T., Bonni, S., Bonni, A. Cdh1-APC controls axonal growth and patterning in the mammalian brain). Science. 303, 1026-1030 (2004).
  21. Stegmuller, J., Huynh, M. A., Yuan, Z., Konishi, Y., Bonni, A. TGFbeta-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis. J. Neurosci. 28, 1961-1969 (2008).
  22. Stegmuller, J., et al. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron. 50, 389-400 (2006).
  23. Kannan, M., Lee, S. J., Schwedhelm-Domeyer, N., Nakazawa, T., Stegmuller, J. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation. PLoS One. 7, (2012).
  24. Kannan, M., Lee, S. J., Schwedhelm-Domeyer, N., Stegmuller, J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development. 139, 3600-3612 (2012).
  25. Gaudilliere, B., Konishi, Y., de la Iglesia, N., Yao, G., Bonni, A. A. CaMKII-NeuroD Signaling Pathway Specifies Dendritic Morphogenesis. Neuron. 41, 229-241 (2004).
  26. Yang, Y., et al. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science. 326, 575-578 (2009).
  27. Litterman, N., et al. An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol. 9, (2011).
  28. Kim, A. H., et al. A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell. 136, 322-336 (2009).
  29. Shalizi, A., et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science. 311, 1012-1017 (2006).
  30. Vadhvani, M., Schwedhelm-Domeyer, N., Mukherjee, C., Stegmuller, J. The Centrosomal E3 Ubiquitin Ligase FBXO31-SCF Regulates Neuronal Morphogenesis and Migration. PLoS One. 8, (2013).
  31. Puram, S. V., et al. A CaMKIIbeta signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat. Neurosci. , (2011).
  32. Jia, Y., Zhou, J., Tai, Y., Wang, Y. TRPC channels promote cerebellar granule neuron survival. Nat. Neurosci. 10, 559-567 (2007).
  33. Huynh, M. A., et al. An isoform-specific SnoN1-FOXO1 repressor complex controls neuronal morphogenesis and positioning in the mammalian brain. Neuron. 69, 930-944 (2011).
  34. de la Torre-Ubieta, L., Bonni, A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron. 72, 22-40 (2011).
  35. Calissano, P., et al. Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells. Proc. Natl. Acad. Sci. U.S.A. 90, 8752-8756 (1993).
check_url/it/51070?article_type=t

Play Video

Citazione di questo articolo
Holubowska, A., Mukherjee, C., Vadhvani, M., Stegmüller, J. Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration. J. Vis. Exp. (85), e51070, doi:10.3791/51070 (2014).

View Video