Summary

利用荧光蛋白可视化和定量<em>衣原体</em>液泡生长动态的活细胞

Published: October 13, 2015
doi:

Summary

A live cell fluorescent protein based method for illuminating cellular vacuoles (inclusions) containing Chlamydia is described. This strategy enables rapid, automated determination of Chlamydia infectivity in samples and can be used to quantitatively investigate inclusion growth dynamics.

Abstract

The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium’s ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.

Introduction

引起细胞内细菌衣原体种传染病引起全球健康的一大负担,包括性传播疾病,盆腔炎,失明,肺炎和动脉粥样硬化有可能1-4。 衣原体到与宿主细胞相互作用,从一个液泡内的能力(称为包含),是一个重要的决定因素的成功细胞和宿主的感染。列入是一种新型的致病隔室,使衣原体生长和在整个衣原体 5的整个 2-3天的发育循环被动态地修改。衣原体的专性细胞内的性质提出了直接学习列入独特的生物学无数挑战,研究界,尤其如此。一个主要的障碍已经无法有效地可视化或者细胞内沙眼或将其列入荧光方法ES在活细胞。最近发现终于露出来产生绿色荧光蛋白表达C.手段衣原体 6;然而,这一发现还没有导致列入特异性标记。一些技术已经被描述用于细菌和夹杂物7,8的标记,但是它们从缺点,例如非特异性,顷刻和易感性漂白受损。一个重要的发现我们集团成立了一个新的战略,利用绿色荧光蛋白表达的宿主细胞9照明列入。这一战略合理利用纳入膜的固有抗渗性的分子大于520大10。当细胞改造成稳定表达特定的细胞内荧光蛋白( GFP或mCherry), 衣原体夹杂物具有显着的清晰度荧光他们完全排除可见。这种倒车影像战略使夹杂物的所有叶绿素即时可视化amydia物种,它可以容易地适用于大多数感兴趣的宿主细胞。由于其效用的演示,这种方法以前用来揭示和定义细胞退出途径衣原体9。

在这里,我们进一步说明此方法的执行,并且可以被利用来导出关于夹杂物的生长动力学键的定量数据。此外,它可以有效地替代昂贵的基于抗体的枚举的方法和可以串联与其他荧光标记,如mKate2表达衣原体 11被使用。这个强大的工具结合,使生活在宿主细胞内的衣原体包涵体膜的物理性质的探索。

Protocol

1.代荧光宿主细胞系以2×10 6个细胞/孔,于6孔板天1.板293T细胞(或其它逆转录病毒包装线)为〜75%汇合的第二天。如果需要的话,所用板的孔一式两份每个逆转录病毒。 第2天,吸细胞和加2ml新鲜生长培养基(DMEM + 10%FBS + 2mM的L-谷氨酰胺)。转染细胞用5-8微克每逆转录病毒载体(含有GFP)和包装载体的(如,pVSVg)使用Lipofectamine 2000或类似试剂,并按照制造商的说?…

Representative Results

表达胞质荧光蛋白(例如,GFP)的哺乳动物细胞可被工程化以使衣原体夹杂照明活,感染的细胞培养物。一旦感染衣原体 ,夹杂物如黑点在宿主细胞中(图1)容易看见。荧光缺乏夹杂物的清晰度可以被利用为夹杂物的整个视和/或处理( 图1)众多领域的自动识别。一旦已经产生荧光的宿主细胞,一个强大的新工作流启用实验样本中衣原体感染水平的?…

Discussion

在这里,我们描述实验的策略产生荧光宿主细胞进行实时可视化和衣原体夹杂物的分析。这种液泡可视化方法赋予强大能力来照亮,跟踪和定量测定衣原体夹杂物的动态属性跨细胞群或单细胞中随着时间的推移, 衣原体夹杂在荧光蛋白标记的细胞惊人地明确定义,使得它们很容易识别而不需要附加的免疫处理。此外,这种方法是足够敏感的解决签名形态差异,不同的衣原体物…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors thank Ian Clarke and P. Scott Hefty for the pGFP-SW2 and pASK-GFP-mKate2-L2 plasmids, respectively. We thank Paul Miller for technical assistance and Richard Stephens for other resources. This work was funded by NIH grant AI095603 (KH).

Materials

Lipofectamine 2000 Invitrogen 11668
Opti-Mem Invitrogen 31985
Polybrene Sigma H9268
0.45 µm filters Fisher 09-719D
G418 Invitrogen 10131
HBSS Invitrogen 14025
DMEM Invitrogen 11995
RPMI 1640 Invitrogen 11875
RPMI 1640 w/o phenol red Cellgro 17-105-CV
Penicillin G Sigma 13752
Cycloheximide Sigma C7698
Glass bottom dishes MatTek P35G-1.5-14-C
Chamber slides, Lab-Tek II Nunc 154526, 154534

Riferimenti

  1. Stamm, W. E. Chlamydia trachomatis infections: progress and problems. The Journal of Infectious Diseases. 179, S380-S383 (1999).
  2. Schachter, J., Stephens, R. S. Infection and disease epidemiology. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. , 139-169 (1999).
  3. Campbell, L. A., Kuo, C. C. Chlamydia pneumoniae–an infectious risk factor for atherosclerosis. Nature Reviews Microbiology. 2 (1), 23-32 (2004).
  4. Darville, T., Hiltke, T. J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. The Journal of Infectious Diseases. 201, S114-S125 (2010).
  5. Hackstadt, T., Stephens, R. S. Cell biology. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. , 101-138 (1999).
  6. Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R. J., Lambden, P. R., Clarke, I. N. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector). PLoS Pathogens. 7 (9), e1002258 (2011).
  7. Hackstadt, T., Scidmore, M. A., Rockey, D. D. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proceedings of the National Academy of Sciences of the United States of America. 92 (11), 4877-4881 (1995).
  8. Boleti, H., Ojcius, D. M., Dautry-Varsat, A. Fluorescent labelling of intracellular bacteria in living host cells. Journal of Microbiological Methods. 40 (3), 265-274 (2000).
  9. Hybiske, K., Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proceedings of the National Academy of Sciences of the United States of America. 104 (27), 11430-11435 (2007).
  10. Heinzen, R. A., Hackstadt, T. The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infection and Immunity. 65 (3), 1088-1094 (1997).
  11. Wickstrum, J., Sammons, L. R., Restivo, K. N., Hefty, P. S. Conditional gene expression in Chlamydia trachomatis using the tet system. PLoS One. 8 (10), 10-1371 (2013).
  12. Chin, E., Kirker, K., Zuck, M., James, G., Hybiske, K. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS One. 7 (10), e46949 (2012).
  13. Agaisse, H., Derré, I. A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS One. 8 (2), e57090 (2013).
check_url/it/51131?article_type=t

Play Video

Citazione di questo articolo
Zuck, M., Feng, C., Hybiske, K. Using Fluorescent Proteins to Visualize and Quantitate Chlamydia Vacuole Growth Dynamics in Living Cells. J. Vis. Exp. (104), e51131, doi:10.3791/51131 (2015).

View Video