Summary

Brug fluorescerende proteiner til at visualisere og kvantificere<em> Chlamydia</em> Vakuole Vækst Dynamics i levende celler

Published: October 13, 2015
doi:

Summary

A live cell fluorescent protein based method for illuminating cellular vacuoles (inclusions) containing Chlamydia is described. This strategy enables rapid, automated determination of Chlamydia infectivity in samples and can be used to quantitatively investigate inclusion growth dynamics.

Abstract

The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium’s ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.

Introduction

Smitsomme sygdomme forårsaget af arter af den intracellulære bakterie Chlamydia fremkalde en større byrde på global sundhed, herunder seksuelt overført sygdom, underlivsbetændelse, blindhed, lungebetændelse og muligvis åreforkalkning 1-4. Evnen af Chlamydia at interagere med værtscellen, fra et vacuole (betegnet optagelse), er en kritisk determinant for en vellykket infektion af celler og værten. Medtagelsen er et nyt patogen rum, der muliggør chlamydia vækst og er dynamisk modificeret hele 2-3 dages udviklingsmæssige cyklus af Chlamydia 5. Den obligat intracellulære natur chlamydiae præsenterer en lang række udfordringer for forskningsverdenen, navnlig for direkte at studere den unikke biologi integration. En større handicap har været den manglende evne til effektivt at visualisere enten intracellulært Chlamydia eller deres optagelse ved fluorescerende tilganges i levende celler. En nylig opdagelse har endelig afsløret de midler til GFP udtrykke C. trachomatis 6; Men dette resultat har endnu ikke ført til særlig mærkning af optagelsen. Nogle teknikker er blevet beskrevet til mærkning af bakterier og inklusioner 7,8, men de lider af mangler, såsom ikke-specifikke, transiency og tilbøjelighed til fotoblegning. En vigtig opdagelse, som vores gruppe etableret en ny strategi til belysning af optagelsen ved hjælp af GFP udtrykkende værtsceller 9. Denne strategi rationelt udnytter den iboende uigennemtrængelighed for optagelse membran til molekyler større end 520 Da 10. Når celler er konstrueret til stabilt udtrykker et bestemt cytosolisk fluorescerende protein (f.eks GFP eller mCherry), Chlamydia inklusioner er synlige med bemærkelsesværdig klarhed ved deres fuldstændige udelukkelse af fluorescens. Denne omvendte imaging strategi gør det muligt omgående visualisering af inklusioner for alle Chlamydia arter, og det kan let tilpasses til de fleste værtceller af interesse. Som en demonstration af sin nytte, blev denne metode anvendt tidligere til at afsløre og definere de cellulære exit veje for Chlamydia spp 9.

Her har vi demonstrerer endvidere, hvorledes denne metode udføres, og kan udnyttes til at udlede vigtige kvantitative data om vækst integration dynamik. Endvidere kan det effektivt erstatte dyre antistofbaserede tælling metoder og kan anvendes sammen med andre fluorescerende mærker, såsom mKate2-udtrykkende Chlamydia 11. Denne kraftfulde kombination af værktøjer muliggør udforskning af de fysiske egenskaber af chlamydia integration membran inde levende værtsceller.

Protocol

1. Generation of Fluorescent Host Cell Lines Day 1. Plate 293T cells (or other retroviral packaging line) on 6-well plates at 2 x 106 cells/well, to be ~75% confluent the next day. If desired, plate duplicate wells for each retrovirus to be used. Day 2. Aspirate cells and add 2 ml fresh growth medium (DMEM + 10% FBS + 2 mM L-glutamine). Transfect cells with 5–8 µg each of retroviral vector (containing GFP) and packaging vector (e.g., pVSVg) using Lipofectamine 2000 or …

Representative Results

Mammalian cells expressing cytosolic fluorescent proteins (e.g., GFP) can be engineered to enable illumination of Chlamydia inclusions in live, infected cell cultures. Upon infection with Chlamydia, inclusions are readily visible as black spots in the host cells (Figure 1). The clarity of fluorescence-lacking inclusions can be exploited for the automated identification of inclusions across numerous fields of view and/or treatments (Figure 1). Once fluorescent h…

Discussion

Here we describe the experimental strategy for generating fluorescent host cells for real time visualization and analysis of Chlamydia inclusions. This vacuole visualization approach confers the powerful ability to illuminate, track and quantitatively measure the dynamic properties of chlamydial inclusions across populations of cells or in single cells over time. Chlamydia inclusions in fluorescent protein labeled cells are strikingly well defined, such that they are easily identified without the need f…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors thank Ian Clarke and P. Scott Hefty for the pGFP-SW2 and pASK-GFP-mKate2-L2 plasmids, respectively. We thank Paul Miller for technical assistance and Richard Stephens for other resources. This work was funded by NIH grant AI095603 (KH).

Materials

Lipofectamine 2000 Invitrogen 11668
Opti-Mem Invitrogen 31985
Polybrene Sigma H9268
0.45 µm filters Fisher 09-719D
G418 Invitrogen 10131
HBSS Invitrogen 14025
DMEM Invitrogen 11995
RPMI 1640 Invitrogen 11875
RPMI 1640 w/o phenol red Cellgro 17-105-CV
Penicillin G Sigma 13752
Cycloheximide Sigma C7698
Glass bottom dishes MatTek P35G-1.5-14-C
Chamber slides, Lab-Tek II Nunc 154526, 154534

Riferimenti

  1. Stamm, W. E. Chlamydia trachomatis infections: progress and problems. The Journal of Infectious Diseases. 179, S380-S383 (1999).
  2. Schachter, J., Stephens, R. S. Infection and disease epidemiology. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. , 139-169 (1999).
  3. Campbell, L. A., Kuo, C. C. Chlamydia pneumoniae–an infectious risk factor for atherosclerosis. Nature Reviews Microbiology. 2 (1), 23-32 (2004).
  4. Darville, T., Hiltke, T. J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. The Journal of Infectious Diseases. 201, S114-S125 (2010).
  5. Hackstadt, T., Stephens, R. S. Cell biology. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. , 101-138 (1999).
  6. Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R. J., Lambden, P. R., Clarke, I. N. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector). PLoS Pathogens. 7 (9), e1002258 (2011).
  7. Hackstadt, T., Scidmore, M. A., Rockey, D. D. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proceedings of the National Academy of Sciences of the United States of America. 92 (11), 4877-4881 (1995).
  8. Boleti, H., Ojcius, D. M., Dautry-Varsat, A. Fluorescent labelling of intracellular bacteria in living host cells. Journal of Microbiological Methods. 40 (3), 265-274 (2000).
  9. Hybiske, K., Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proceedings of the National Academy of Sciences of the United States of America. 104 (27), 11430-11435 (2007).
  10. Heinzen, R. A., Hackstadt, T. The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infection and Immunity. 65 (3), 1088-1094 (1997).
  11. Wickstrum, J., Sammons, L. R., Restivo, K. N., Hefty, P. S. Conditional gene expression in Chlamydia trachomatis using the tet system. PLoS One. 8 (10), 10-1371 (2013).
  12. Chin, E., Kirker, K., Zuck, M., James, G., Hybiske, K. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS One. 7 (10), e46949 (2012).
  13. Agaisse, H., Derré, I. A C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS One. 8 (2), e57090 (2013).
check_url/it/51131?article_type=t

Play Video

Citazione di questo articolo
Zuck, M., Feng, C., Hybiske, K. Using Fluorescent Proteins to Visualize and Quantitate Chlamydia Vacuole Growth Dynamics in Living Cells. J. Vis. Exp. (104), e51131, doi:10.3791/51131 (2015).

View Video