Summary

翻译起始的分析在应力条件由多聚核糖体剖析

Published: May 19, 2014
doi:

Summary

在这里,我们描述一个变化来分析真核细胞中的mRNA的翻译的响应于胁迫条件的启动方法。此方法是基于换算从非翻译的核糖体的核糖体的蔗糖梯度的速度分离。

Abstract

mRNA翻译的精确控制是基本的真核细胞内环境稳定,特别是在应对生理和病理的压力。这个方案的改变可导致受损细胞的生长,癌症发展的一个标志,或过早的细胞死亡如见于神经变性疾病。多的关于对翻译控制的分子基础所谓已经从多核糖体分析使用密度梯度分级分离系统获得的。这种技术依赖于细胞质提取物对超速的线性蔗糖梯度。一旦旋转完成时,该系统允许分馏对应于不同翻译离心分离区与定量核糖体种群,从而导致多核糖体模式。变化多核糖体轮廓是指示发生在响应各类应力的翻译起始的变化或缺陷。此技术还允许以评估日特定蛋白对翻译起始é角色,并衡量特定mRNA的翻译活动。这里我们描述的协议,以便评估在正常或胁迫生长条件下的真核细胞和组织的翻译起始执行多核糖访问。

Introduction

真核细胞中不断遇到各种需要快速适应性细胞反应有害的生理和环境应激条件。细胞应激反应涉及抗生存和促存活作用因子之间的精确平衡。破坏这种平衡可以有不可逆的后果导致人类疾病如癌症和神经退行性疾病的发展。在应激反应的第一步骤中,细胞激活,涉及改变基因表达在mRNA翻译水平的协调控制促存活途径。

在真核生物mRNA的翻译是涉及翻译起始因子(EIFS),特定的RNA结合蛋白(其中,RBD)和RNA分子1之间协调的相互作用复杂的细胞过程。 mRNA翻译被分成三个不同的阶段:起始,延伸和终止。虽然所有三个阶段都受到REGUlatory机制,平移控制机制,针对翻译的大多是起始阶段,这足以构成蛋白质的合成2的限速步骤。

翻译起始是一个高度有序的过程,开始于eIF2a.GTP.Met-tRNA的形成遇到了三元复合物及其随后的结合到40S核糖体亚单位,从而导致预起始复合物的形成。接下来的步骤是将起始前复合物的mRNA,它涉及到翻译起始因子如eIF4F和eIF3的活性的募集。由此形成的48S起始前复合物经受特定的构象变化,使此机器开始扫描mRNA的5'-非翻译区,直到它识别起始密码子八月大部分的翻译起始因子,然后释放,60S亚基招募形成80S核糖体复合胜任翻译,一吨点蛋白质合成开始( 图1),其中。多个80S monosome可翻译的mRNA相同的时间产生所谓的多聚核糖体(或者多聚核糖体)。多聚核糖体上的mRNA的密度反映了起始,延长和终止率,因而是一种特殊的转录物的可译性的度量。然而,多核糖更新主要用于在启动步骤,以评估变化的mRNA的翻译。在这里,我们使用了蛋白酶体抑制剂作为翻译起始抑制剂。癌细胞与这种药物治疗引起应激反应特点是激活的磷酸化翻译起始因子eIF2a 3名为HRI应力激酶。 eIF2a的磷酸化是重要的事件,导致翻译起始的在哺乳动物细胞中4的抑制作用1。

Protocol

该协议遵循的指导方针 经伐的伦理审查委员会。 1,制备细胞培养和脑操作哺乳动物和果蝇细胞生长的HeLa宫颈癌细胞和施奈德果蝇胚胎细胞所推荐的美国典型培养物保藏中心。与细胞在低通道工作。 板单元,以达到80%汇合的实验当天。为获得最佳结果,用〜12×10 6个细胞的每个实验条件。在进行提取物为多核糖体分析?…

Representative Results

如前面提到的,多核糖体轮廓允许翻译起始的胁迫条件下的变化的分析, 图1是如前面所述是一个涉及翻译起始复合物的有序组装多步骤的过程翻译起始的简化视图。在正常生长条件下,翻译起始复合物被转化为多核糖体,其检测由多核糖更新证实为一个活跃的翻译起始( 图2;未处理)。根据应力条件然而,翻译起始被阻断导致80S monosomes积累和减少的多核糖体的峰( <stro…

Discussion

在蔗糖梯度上的多核糖体轮廓分析允许翻译起始的测量通过分析多核糖体从细胞或组织9,11-14孤立的密度。这种技术是最好的(如果不是唯一的)方法来衡量翻译起始体内 。它是用来监视在细胞周期15生长的细胞的平移状态,并评估各种类型的应力,包括病毒感染,缺氧13,16,辐射17,和化学药物治疗中使用的18的作用,对翻译起始。然而,尽管这种?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

PA是奖学金“皮埃尔·杜兰德”的拉瓦尔大学医学院收件人。这项工作是支持由加拿大自然科学和工程研究理事会(MOP-CG095386)马币的多核糖体分馏是通过加拿大创新基金会赠款(MOP-GF091050)所收购,以RMR M拥有一个新的CIHR研究员薪水奖。

我们感谢博士。 E. Khandjian,一Gallouzi,S.迪 – 马可和A. Cammas的有益建议。

Materials

Cells
HeLa cervical cancer cells American Type Culture Collection (Manassas, VA; ATCC) CCL-2
Schneider Drosophila embryonic cells American Type Culture Collection (Manassas, VA; ATCC) CRL-1963
Culture medium and Supplements
Schneider’s Drosophila Medium Sigma-Aldrich SO146-500ml
DMEM Life technologies 11995-073
FBS Fisher Scientist Scientist SH30396-03
penicillin/streptomycin Life technologies 15140122
Sucrose solutions
D-Sucrose Fisher Scientist BP220-212
Glycerol Sigma-Aldrich 49767
Blue Bromophenol Fisher Scientist B3925
Lysis buffer
Tris Hydrochloride Fisher Scientist BP153-500
MgCl2 Sigma-Aldrich M2670-100G
NaCl Tekniscience 3624-05
DTT Sigma-Aldrich D 9779
Nonidet P40 (Igepal CA-630 ) MJS Biolynx 19628
SDS Tekniscience 4095-02
RNase inhibitor (RnaseOUT Recombinant Ribonuclease Inhibitor) Life technologies 10777-019
Antiproteases (complete, mini, EDTA free) Roche 11,836,170,001
RNA Extraction
Proteinase K Life technologies AM2542
Phenol: Chloroforme Fisher Scientist BP1754I-400
Chloroforme Fisher Scientist C298-500
Glycogen Life technologies 10814-010
Isopropanol Acros organics 327270010
Antibodies
anti-FMRP antibody Fournier et al., Cancer Cell International, 2010
anti-Ribosomal Protein L28 antibody Santa Cruz Biotechnology, Inc. SC-50362
Others
Proteasome inhibitor : Bortezomib LC Laboratories B-1408
DEPC (Diethylpyrocarbonate) Sigma-Aldrich D5758-25ml
RNaseZAP Solution Life technologies AM9780
Materials
T25 cell culture flask Corning 430639
1cc U100 Insulin Syringe 28 G1/2 Fisher Scientist 148291B
Tube ultra-centrifugation, PA, 12ml Fisher Scientist FSSP9763205
Isco Model 160 gradient former Teledyne Isco, Lincoln, NE, USA
Ultracentrifuge Sorvall OTD Combi
Thermo Scientific Sorvall Rotor TH-641 Thermo scientific 54295
Automated Density Fractionation System Teledyne Isco, Lincoln, NE, USA 67-9000-177
Isco UA-6 UV-vis detector Teledyne Isco, Lincoln, NE, USA
NanoDrop 2000 UV-Vis Spectrophotometer Thermo scientific
Ultracentrifuge C 5415 Eppendorf
Optical Microscope Olympus CK2

Riferimenti

  1. Gebauer, F., Hentze, M. W. Molecular mechanisms of translational control. Nature Reviews. Molecular Cell Biology. 5 (10), 827-835 (2004).
  2. Jackson, R. J., Hellen, C. U. T., Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews. Molecular Cell Biology. 11 (2), 113-127 (2010).
  3. Fournier, M. -. J., Gareau, C., Mazroui, R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell International. 10 (12), (2010).
  4. Holcik, M., Sonenberg, N. Translational control in stress and apoptosis. Nature Reviews. Molecular Cell Biology. 6 (4), 318-327 (2005).
  5. Mazroui, R., Huot, M. -. E., Tremblay, S., Filion, C., Labelle, Y., Khandjian, E. W. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Human Molecular Genetics. 11 (24), 3007-3017 (2002).
  6. Mazroui, R., Huot, M. -. E., Tremblay, S., Boilard, N., Labelle, Y., Khandjian, E. W. Fragile X Mental Retardation protein determinants required for its association with polyribosomal mRNPs. Human Molecular Genetics. 12 (23), 3087-3096 (2003).
  7. Farny, N. G., Kedersha, N. L., Silver, P. a Metazoan stress granule assembly is mediated by P-eIF2alpha-dependent and -independent mechanisms. RNA. 15 (10), 1814-1821 (2009).
  8. Gareau, C., Houssin, E., et al. Characterization of fragile x mental retardation protein recruitment and dynamics in Drosophila stress granules. PLoS ONE. 8 (2), (2013).
  9. Brackett, D. M., Qing, F., Amieux, P. S., Sellers, D. L., Horner, P. J., Morris, D. R. FMR1 transcript isoforms: association with polyribosomes; regional and developmental expression in mouse brain. PLoS ONE. 8 (3), (2013).
  10. Khandjian, E. W., Huot, M. -. E., Tremblay, S., Davidovic, L., Mazroui, R., Bardoni, B. Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proceedings of the National Academy of Sciences of the United States of America. 101 (36), 13357-13362 (2004).
  11. Erikson, A., Winblad, B., Wallace, W. Translational control of gene expression in the human brain. Prog Neuropsychopharmacol Biol Psychiatry. 13 (3-4), 469-479 (1989).
  12. Stephens, S. B., Nicchitta, C. V In vitro and tissue culture methods for analysis of translation initiation on the endoplasmic reticulum. Methods in Enzymology. 431, 47-60 (2007).
  13. Koritzinsky, M., Wouters, B. G. Hypoxia and regulation of messenger RNA translation. Methods in Enzymology. 435, 247-273 (2007).
  14. Khandjian, E. W., Corbin, F., Woerly, S., Rousseau, F. The fragile X mental retardation protein is associated with ribosomes. Nature Genetics. 12, 91-93 (1996).
  15. Sivan, G., Kedersha, N., Elroy-Stein, O. Ribosomal slowdown mediates translational arrest during cellular division. Molecular and Cellular Biology. 27 (19), 6639-6646 (2007).
  16. Thomas, J. D., Johannes, G. J. Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA. 13, 1116-1131 (2007).
  17. Kumaraswamy, S., Chinnaiyan, P., Shankavaram, U. T., Lü, X., Camphausen, K., Tofilon, P. J. Radiation-induced gene translation profiles reveal tumor type and cancer-specific components. Ricerca sul cancro. 68 (10), 3819-3826 (2008).
  18. Fournier, M. -. J., Coudert, L., et al. Inactivation of the mTORC1-eIF4E Pathway alters Stress Granules Formation. Molecular and Cellular Biology. 33 (11), 2285-2301 (2013).
  19. Sanchez, G., Dury, A. Y., et al. A novel function for the survival motoneuron protein as a translational regulator. Human Molecular Genetics. 22 (4), 668-684 (2013).
  20. Béchade, C., Rostaing, P., et al. Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport. The European Journal of Neuroscience. 11 (1), 293-304 (1999).
  21. Goulet, I., Boisvenue, S., Mokas, S., Mazroui, R., Côté, J. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Human Molecular Genetics. 17 (19), 3055-3074 (2008).
  22. Nottrott, S., Simard, M. J., Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Structural & Molecular Biology. 13 (12), 1108-1114 (2006).
  23. Genolet, R., Araud, T., Maillard, L., Jaquier-Gubler, P., Curran, J. An approach to analyse the specific impact of rapamycin on mRNA-ribosome association. BMC Medical Genomics. 1 (33), (2008).
  24. Del Prete, M. J., Vernal, R., Dolznig, H., Müllner, E. W., Garcia-Sanz, J. a Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments. RNA. 13 (3), 414-421 (2007).
  25. Thoreen, C. C., Chantranupong, L., Keys, H. R., Wang, T., Gray, N. S., Sabatini, D. M. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 485 (7396), 109-113 (2012).
  26. Ingolia, N. T., Brar, G. A., Rouskin, S., Mcgeachy, A. M., Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols. 7 (8), 1534-1550 (2012).
  27. Morris, D. R. Ribosomal footprints on a transcriptome landscape. Genome Biology. 10 (4), (2009).
check_url/it/51164?article_type=t

Play Video

Citazione di questo articolo
Coudert, L., Adjibade, P., Mazroui, R. Analysis of Translation Initiation During Stress Conditions by Polysome Profiling. J. Vis. Exp. (87), e51164, doi:10.3791/51164 (2014).

View Video