Summary

Quantification du cancer du sein cellulaire envahissement aide d'un (3D) du modèle en trois dimensions

Published: June 11, 2014
doi:

Summary

Cet article fournit des méthodologies détaillées pour l'utilisation de trois dimensions (3D) des essais pour quantifier l'invasion des cellules du cancer du sein. Plus précisément, nous discutons les procédures nécessaires pour mettre en place de tels essais, la quantification et l'analyse des données, ainsi que des méthodes pour examiner la perte de l'intégrité de la membrane qui se produit lorsque les cellules envahissent.

Abstract

Il est maintenant bien connu que le microenvironnement cellulaire et tissulaire sont des régulateurs critiques qui influencent l'initiation et la progression tumorale. En outre, la matrice extracellulaire (ECM) a été démontrée comme étant un régulateur critique du comportement des cellules en culture et in vivo de l'homéostasie. L'approche actuelle de la culture de cellules sur deux dimensions (2D), plastiques résultats surfaces de la perturbation et la perte d'interactions complexes entre les cellules et leur microenvironnement. Grâce à l'utilisation de trois dimensions (3D) des analyses de culture, les conditions d'interaction cellule-microenvironnement sont établies ressemblant le micro-environnement in vivo. Cet article propose une méthodologie détaillée pour cultiver des cellules du cancer du sein dans une matrice 3D sous-sol de la protéine de membrane, ce qui illustre le potentiel de la culture en 3D dans l'évaluation de l'invasion de cellules dans le milieu environnant. En outre, nous discuter de la façon dont ces essais 3D ont le potentiel pour examiner la perte de molec signalisationdules qui régulent la morphologie épithéliale par immunomarquage procédures. Ces études aident à identifier les détails mécanistiques importantes dans les processus de régulation invasion, nécessaires à la propagation du cancer du sein.

Introduction

La migration et l'invasion des cellules individuelles ou collectives sont deux caractéristiques du cancer, et requis pour la propagation métastatique des cellules cancéreuses 4.1. La capacité des cellules cancéreuses à initier une métastase dépend de leur capacité à migrer et à envahir les tissus voisins utilisant invadopodia de dégrader la membrane basale des cellules. Invadopodia sont des saillies de dégradation de la matrice riche en actine dynamiques qui permettent la dégradation de la matrice extracellulaire par l'intermédiaire de la libération de proteases dégradant la matrice 5. l'invasion des cellules du cancer implique la dégradation de la matrice, suivi par la migration des cellules cancéreuses, ce qui s'accompagne d'une réorganisation de la tridimensionnel (3D) de l'environnement de la matrice 2. Ainsi, pour pénétrer à travers la matrice, une cellule doit transformer sa forme et à interagir avec la matrice extracellulaire (ECM) 2.

Le maintien de l'intégrité du tissu mammaire dépend étroitement controlled architecture tissulaire depuis les jonctions cellule-ECM et l'adhérence cellule-cellule influencent l'expression génique et la perturbation de la polarité épithéliale peut conduire à l'apparition du cancer 10.6. Cependant, la plupart des essais in vitro de migration et d'invasion dans tels que transwell tests de chambre ou des essais plaie-rayures sont à deux dimensions (2D) et donc les négligent les interactions complexes entre les cellules et leur environnement adjacent 3,6,8,11-14. Diversités morphologiques et fonctionnelles importantes, y compris les variations de la morphologie cellulaire, la différenciation cellulaire, des adhérences cellule-matrice et des profils d'expression génique ont été détectés par mise en culture des cellules dans des cultures 3D qui sont couramment défaut dans 2D dosages 2,6,8,11. Ainsi, l'utilisation de tests 3D sont nettement bénéfique en récapitulant un plus physiologique en état ​​vivo, conduisant à une meilleure application des conclusions révolutionnaires de la recherche fondamentale à la clinique 6-10. Toutefois, il convient de noter, En dépit des nombreux avantages obtenus avec l'utilisation de cultures 3D, ce modèle ne peut pas capturer toutes les complexités du microenvironnement tumoral in vivo en incluant différents types cellulaires. Cependant, il est possible d'incorporer des cellules stromales dans les modèles 3D (par exemple, les fibroblastes, les leucocytes et les macrophages) pour étudier l'effet des interactions tumeur-stroma sur l'adhérence des cellules cancéreuses et l'invasion de 15 à 17.

Cellules épithéliales mammaires en culture se développent le plus efficacement lorsque les protéines de la MEC comme la laminine et le collagène sont présents. Avec cette connue, un mélange de matrice disponible dans le commerce a été dérivé de Engelbreth-Holm-Swarm (EHS) tumeur murine et est connu comme matrice de la membrane Matrigel sous-sol 2,8. Un certain nombre de techniques ont été mis en place pour cultiver des cellules épithéliales que colonies 3D dans la matrice de membrane basale 2,8. La membrane basale modèle de matrice 3D est efficace pour établir cellule à la fois malin et non malignes du seincroissance ressemblant à ce qui se produit dans l'environnement in vivo 18,19. MCF10A cellules sont des cellules épithéliales mammaires non malignes. Lorsqu'il est cultivé en sous-sol matrice de la membrane, ces cellules présentent en traits in vivo de cellules mammaires normales et subir une prolifération cellulaire contrôlée, de la polarisation cellulaire, l'apoptose et pour établir l'espace de lumière 8,12,20. Par ailleurs, l'apparition de noyaux cellulaires de cellules formant des acini MCF10A dans des cultures 3D ressemblent plus étroitement à celles des cellules épithéliales mammaires en tissu que ceux cultivés dans monocouche 21. Des études menées par Bissell et ses collègues ont été les premiers à révéler que les cellules malignes du sein peuvent être différenciées à partir de cellules non malignes du sein lorsqu'il est cultivé dans un laminine riche environnement, puisque les cellules malignes présentent un phénotype très désorganisé, une prolifération accrue, une diminution de cellule-à- l'adhésion cellulaire, l'augmentation de l'expression de marqueurs mésenchymateuses et une augmentation du nombre de structures formées 3,6,2 invasive2.

Des anomalies de l'environnement cellulaire peuvent influencer la formation de tumeur 20. Le procédé de culture en 3D peut être utilisée pour étudier efficacement la communication qui se produit entre les cellules tumorales et leur environnement et à déterminer comment les influences d'expression de protéines telles 14,20,21,23 de communication. Cet article fournit une méthodologie détaillée de croître MDA-MB-231 cellules de cancer du sein dans les cultures 3D pour analyser envahissant, et d'étudier la perte de la morphologie épithéliale en utilisant un laminine marqueur épithélial, un composant de la membrane basale de la cellule 18,19,24, 25. Les procédures détaillées offrent la possibilité de quantifier avec précision et de façon reproductible stellaire (invasive) formation de la structure par une cellule de cancer invasif et n'est pas limitatif pour les lignées cellulaires de cancer du sein commun (telles que des cellules MDA-MB-231, Hs578T, MCF-7, ou T47D ). Ainsi, ce test peut servir de plate-forme pour évaluer la façon dont l'expression protéique dans les cellules ou le traitement avec pro-ou anti-composés invasives régulent dégradation de la matrice extracellulaire, par des cellules uniques ou multiples.

Protocol

1. Culture tridimensionnelle de cellules de cancer du sein dans la membrane basale Matrix (La Technique Embedment) Manipulation Matrigel matrice de la membrane basale: Décongeler sur la glace pendant une nuit à 4 ° C. Basement membrane-matrice est liquide à basse température mais se solidifie à la température ambiante. Gardez sous-sol matrice de la membrane sur la glace (figures 1A-B). Couvrir le plat à fond de verre n ° 1 confocale avec 50 pl de la matrice de la membrane b…

Representative Results

Un exemple des cellules MDA-MB-231 dans des cellules qui envahissent la matrice 3D est illustré sur la figure 3C. Les cellules sont enrobées dans une matrice (Jour 1), et commencent à se former (étoilées) structures envahissantes par jour 3, et envahissent complètement dans la matrice par Jour 5 (figure 3C). Le nombre de colonies formées étoilées sont comptés, et exprimée en pourcentage du nombre total de colonies par boîte (invasives et non invasives). En outre, puisque les…

Discussion

Le développement de la 3D des techniques de culture cellulaire a permis aux chercheurs d'étudier la transformation des cellules épithéliales mammaires, ce qui nous permet de visualiser les changements morphologiques spectaculaires. Outre l'analyse de l'invasion des cellules, les sphéroïdes épithéliales mammaires ou multicellulaires simples peuvent être utilisés pour évaluer les changements dans l'adhésion cellulaire, la prolifération, la taille et basal-apical polarité. Contrairement aux m?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was conducted with funds to M.B. from the Canadian Institutes of Health Research (CIHR) grant MOP 107972. M.B. is a recipient of a CIHR New Investigator Salary Award. D.C. is a recipient of studentships from the Translational Breast Cancer Research Unit and the CIHR Strategic Training Program in Cancer Research and Technology Transfer, London Regional Cancer Program. C.G. is recipient of studentships from the Translational Breast Cancer Research Unit, London Regional Cancer Program and from the CIHR- Strategic Training Program in Cancer Research and Technology Transfer. SGD.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
1.5 mL tubes VWR CA10011-700 Sterile, disposable
100-mm culture dish BD353003 VWR CABD353003 Sterile, disposable
15 mL Falcon tube VWR CA21008-918 Sterile, disposable
1 mL filtered tips VWR 10011-350 Sterile, disposable
200 uL filtered tips VWR 22234-016 Sterile, disposable
20 uL filtered tips VWR 22234-008 Sterile, disposable
35-mm glass-bottomed Confocal No.1 culture dishes  MatTek Corporation P35G-1.0-14-C Precooled before use
Bovine serum albumin (BSA) BioShop ALB003.100 Used at 3% for IF
Alexa Fluor 488 Goat Anti-Mouse IgG (H+L) Antibody, highly cross-adsorbed Life Technologies  A11029 1:250 for IF
Alexa Fluor 568 Goat Anti-Rabbit IgG (H+L) Antibody Life Technologies  A11011 1:1200 for IF
Anti-Beta-Catenin  BD Transduction Laboratories 610153 Mouse-monoclonal; Used at 1:100 for IF
Fetal bovine serum (FBS) Sigma F1051 Used at 10% (v/v) 
Hoechst 33258, Pentahydrate (bis-Benzimide) – 10 mg⁄mL Solution in Water Life Technologies H3569 Used at 0.1% (1:10000 dilution)
InVivo Analyzer Suite  Media Cybernetics Used for 3D culture imaging (DIC images at 10x and 40x)
Kisspeptin-10 (KP-10) EZ Biolabs PT0512100601 Used at 100nM 
Anti-Laminin  Cedarlane AB19012(CH) Rabbit-polyclonal full length human; Used at 1:100 for IF
LSM-510 META laser scanning microscope  Zeiss Used at 63X objective; oil immersion lens
Matrigel phenol red free (BD356237) VWR CACB356237  Lot No.2180819; 10.4 mg/mL
Olympus IX-81 microscope  Olympus Used for 3D culture imaging (DIC images at 10x and 40x)
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 Antibiotic (added to media; used at 0.01%)
10 mL pipet  VWR CA53300-523 Sterile, disposeable
RPMI 1640 Medium with Glutamine Life Technologies 11875-119 Used for culturing of MDA-MB-231 cells
0.25% Trypsin-EDTA (1X), Phenol Red Life Technologies 25200-072 Used to trypsinize MDA-MB-231 cells
MEGM (bullet kit): MEBM (CC3151)+Single quots (CC4136) Lonza CC-3150 Used for culturing of MCF10A cells

Riferimenti

  1. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2, 563-572 (2002).
  2. Kramer, N., et al. In vitro cell migration and invasion assays. Mutat Res. 752, 10-24 (2013).
  3. Shaw, K. R., Wrobel, C. N., Brugge, J. S. Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia. 9, 297-310 (2004).
  4. Eccles, S. A., Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet. 369, 1742-1757 (2007).
  5. Poincloux, R., Lizarraga, F., Chavrier, P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. Journal of cell science. 122, 3015-3024 (2009).
  6. Bissell, M. J., Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment. Cancer Cell. 7, 17-23 (2005).
  7. Burgstaller, G., Oehrle, B., Koch, I., Lindner, M., Eickelberg, O. Multiplex Profiling of Cellular Invasion in 3D Cell Culture Models. PLoS One. 8, (2013).
  8. Debnath, J., Muthuswamy, S. K., Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 30, 256-268 (2003).
  9. Mroue, R., Bissell, M. J. Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol. 945, 221-250 (2013).
  10. Vidi, P. A., Bissell, M. J., Lelievre, S. A. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 945, 193-219 (2013).
  11. Bissell, M. J., Rizki, A., Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol. 15, 753-762 (2003).
  12. Debnath, J., et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell. 111, 29-40 (2002).
  13. Weaver, V. M., Bissell, M. J. Functional culture models to study mechanisms governing apoptosis in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 4, 193-201 (1999).
  14. Weaver, V. M., Howlett, A. R., Langton-Webster, B., Petersen, O. W., Bissell, M. J. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol. 6, 175-184 (1995).
  15. Kenny, H. A., Krausz, T., Yamada, S. D., Lengyel, E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer. 121, 1463-1472 (2007).
  16. Cougoule, C., et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. European journal of cell biology. 91, 938-949 (2012).
  17. Sung, K. E., et al. Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models. PLoS One. , (2013).
  18. Li, T. T., et al. Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res. 7, 1064-1077 (2009).
  19. Zajac, M., et al. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One. 6, (2011).
  20. Underwood, J. M., et al. The ultrastructure of MCF-10A acini. J Cell Physiol. 208, 141-148 (2006).
  21. Lelievre, S. A., et al. Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci U S A. 95, 14711-14716 (1998).
  22. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R., Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A. 89, 9064-9068 (1992).
  23. Weaver, V. M., et al. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell. 2, 205-216 (2002).
  24. Cvetkovic, D., et al. KISS1R Induces Invasiveness of Estrogen Receptor-Negative Human Mammary Epithelial and Breast Cancer Cells. Endocrinology. , 1999-2014 (2013).
  25. Alemayehu, M., et al. beta-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One. , (2013).
check_url/it/51341?article_type=t

Play Video

Citazione di questo articolo
Cvetković, D., Goertzen, C. G., Bhattacharya, M. Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model. J. Vis. Exp. (88), e51341, doi:10.3791/51341 (2014).

View Video