Summary

Fremstilling af primær Myogenic precursorcelle / myoblast kulturer fra Basal hvirveldyr afstamninger

Published: April 30, 2014
doi:

Summary

In vitro kultur systemer har vist sig uundværlig for vores forståelse af hvirveldyr myogenese. Dog stadig meget at lære om nonmammalian skeletmuskulatur udvikling og vækst, især i basal taxa. En effektiv og robust protokol for at isolere voksne stamceller i dette væv, de myogene præcursorceller (MPL), og opretholdelse af deres selv-fornyelse, proliferation og differentiering i en primær kultur indstilling giver mulighed for at identificere bevarede og divergerende reguleringsmekanismer hele slægter hvirveldyr.

Abstract

På grund af den iboende vanskelighed og tid, der med at studere den myogene program in vivo dyrkningssystemer primære afledt fra de bosiddende voksne stamceller skeletmuskulatur, de myogene præcursorceller (MPCs), har vist sig uundværlig for vores forståelse af pattedyr skeletmuskulatur udvikling og vækst. Især blandt den basale systematiske enheder af Hvirveldyr dog data er begrænsede, der beskriver de molekylære mekanismer, der styrer den selv-fornyelse, proliferation og differentiering af Middelhavspartnerlandene. Af særlig interesse er potentielle mekanismer der ligger til grund evne basal hvirveldyr at gennemgå betydelig postlarval skelet myofiber hyperplasi (dvs. benfisk) og fuldt regeneration efter vedhæng tab (dvs. halepadder padder). Derudover kan anvendelsen af ​​dyrkede myoblaster støtte i forståelsen af ​​regenerering og reprisen af ​​myogenic program og forskellene mellem dem. Tildette formål har vi beskriver i detaljer, en robust og effektiv protokol (og variationer deri) til isolering og vedligeholdelse af Middelhavspartnerlandene og deres afkom, myoblaster og umodne myorør i cellekultur som en platform for at forstå udviklingen af ​​myogenic program, begyndende med mere basale hvirveldyr. Udnytte modelorganismen status zebrafisk (Danio rerio), rapporterer vi om anvendelsen af denne protokol til små fisk af karpefisk clade Danioninae. I tandem, kan denne protokol udnyttes til at realisere en bredere komparativ tilgang ved at isolere Middelhavspartnerlandene fra den mexicanske Axolotl (Ambystomamexicanum) og endda gnavere. Denne protokol er nu almindeligt anvendt i at studere myogenese i flere fiskearter, herunder regnbueørred, laks, og guldbrasen 1-4.

Introduction

Betydelig forståelse af pattedyr myogenese er opnået gennem sammenfatning af denne proces i både primær mus (Mus musculus) myoblast kulturer og velbeskrevet muse-cellelinie, C2C12 5.. Begyndende i 1950'erne 6, har disse kulturer ført til megen fremgang i forståelsen af murinemyogenic program og i forlængelse heraf myogenese i andre hvirveldyr. Derudover har encellede myofiber eksplantation teknikker steget ud forståelse af samspillet mellem satellit celler og omkringliggende myofibre 7-9. Cellekulturer særligt attraktivt for undersøgelser af myogenese grund af den korte tid fra forløber for differentieret celle 10, relativt lette transfektion for RNAi 11-14 transgene 15,16 og overekspression undersøgelser 14,17,18 in vitro ekspansion efterfulgt af in vivo-transplantation 18-20, og endda compArison af myogene prækursorceller og deres regulerende agenter over taxa 21,22. Mens forskelle på grund af den kunstige miljø af kulturen systemet er blevet beskrevet 5,23, har disse in vitro systemer vist sig at være uundværlig for vores dissektion af de indviklede program regulerer dannelsen af flercellede, terminalt differentieret myofibersfrom mononukleære proliferative stamceller kendt som myosatellite celler (MSC) blandt pattedyr.

Uden for klassen Mammalia dog bevarelse og / eller divergens af mekanismer, der styrer myogenese er dårligt forstået, hovedsagelig på grund af vanskeligheden ved dyrkning myogene prækursorceller (MPCs) og myoblaster fra forskellige taxa. Faktisk har primære myoblast kulturer kun blevet beskrevet i tre fugle 24-26, et krybdyr 27, et par padder 28-30, og nogle fisk 1,3,4,31-33. Kontinuerlig myogene cellelinjer fra veandre end gnavere 34-36 rtebrates er endnu mere sjældent, med den eneste ikke-pattedyr myogene cellelinie er afledt af japansk vagtel (Cortunix japonica), QM7 37. Trods mange forsøg på immortalisering, en teleost myogenic cellelinie fortsat undvigende og en protokol til effektiv transfektion af disse celler blev først offentliggjort i år 15. Således er klare og godt optimeret protokoller for dyrkning af primære Middelhavspartnerlandene og myoblaster fra en række af hvirveldyr meget nødvendig for at ikke blot yderligere udvide vores viden om udviklingen af ​​myogenic program, men at ansætte magt sammenlignende fysiologi at gøre gennembrud i behandling af humane skeletmuskel sygdomme og lidelser.

Mens litteraturen indeholder mange rapporter om MPC / myoblast isolation 38-49, er det almindeligt for forfattere til at beskrive protokoller for sådanne isolationer i korte, ofte ufuldstændige, formater. Endvidere er de mest lærerige protokoller reported er udviklet til mus 50-53, og nogle af disse er afhængige af Antibody Selection 54,55 eller fluorescens transgener 56,57, hvilket gør disse protokoller ubrugelige eller upraktiske inderste ikke-gnavere udnyttet af muskel biologer. Med lidt kendt om piscine, padder og krybdyr myogenese, en detaljeret og grundig protokol, der er beskrevet med audiovisuelle vejledning og med demonstreret effektivitet i fjernt beslægtede arter ville være mest nyttigt til feltet.

Først beskrevet af Powell og kolleger i 1989 58 blev følgende protokol oprindeligt udviklet til at isolere Middelhavspartnerlandene og myoblaster fra laksefisk fisk (nemlig regnbueørred, Oncorhynchus mykiss, og atlanterhavslaks, Salmo salar) og nogle større karpefisk (dvs. guldfisk, Carassiusauratusauratus) . I 2000 Fauconneau og Paboeuf optimeret en primær myoblast kultur for regnbueørred 59, og minoroptimizations made denne protokol anvendelige i flere mindre minnows af Danioninae clade (zebrafisk, Danio rerio, og kæmpe danio, Devario aequipinnatus) 32 på grund af de mange genetiske værktøjer til rådighed for zebrafisk arbejde og dermed dens nære slægtninge. Benfisk er attraktive organismer til undersøgelse på grund af deres afvigende vækststrategi (i hvert fald i de fleste arter). Store laksefisk, ligesom de fleste fisk, vokser tidsubegrænset, med vækstpotentiale uhindret af en asymptote ved udløb, selv i alderdommen 60-62. I modsætning til zebrafisk, store danionins såsom kæmpe danio 63 og moustached Danio display vækstpotentialer typiske for benfisk, hvilket gør deres direkte sammenstilling en ideel platform for forståelse om MPC celle skæbne valg spiller en rolle i skeletmuskulatur hyperplasi kontra hypertrofi.

Ligeledes har vi vist, at denne protokol kan bruges med mus og axolotls med relativt høje celle udbytte og viaBility indeks. Halepadder salamandre, såsom den mexicanske Axolotl (Ambystomamexicanum), besidder den bemærkelsesværdige evne til at regenerere væv, herunder hele lemmer og hale 64-66. Denne egenskab gør disse padder interessante modeller af skeletmuskelsvind og aldring. Anvendelse af protokollen beskrevet nedenfor, kan der foretages en lignende fremgangsmåde som man har gjort i mange fiskearter, der giver en endnu bredere komparativ kontekst for sådanne undersøgelser. Som mange virkelig sammenlignende biologer pris på, de mest meningsfulde fremskridt i grundlæggende biologi og translationel biomedicin kan foretages, når data analyseres inden det bredeste spektrum (her, hele hvirveldyr afstamning).

Protocol

Etik Statement: Alle forsøg med hvirveldyr, der er beskrevet heri, blev godkendt på forhånd af Institutional Animal Care og brug Udvalg for University of Alabama i Birmingham og er i overensstemmelse med retningslinjer fastlagt af Office of Laboratory Animal Welfare, National Institutes of Health i USA Institut for Sundhed og Human Services. 1.. Til kultur Forbered basismediet som følger: 9 mM NaHCO3 (1,51 g pr 2 L), 20 mM HEPES (9,53 g pr 2 L) i DMEM (13,4…

Representative Results

Fireogtyve timer efter såning, myogene præcursorceller (MPCs) skal være synlig fastgjort til laminin substrat (se figur 1a og 1d). Efter såning, celler (MPCs) vedtage en spindel-lignende form, indikerer denne celletype (figur 1) og er MYOD1 + (Figur 2). I Danio arter, Middelhavspartnerlandene synes at være mere kompakt med mindre bipolære processer end at gøre Middelhavspartnerlandene fra Oncorhynchus og Salmo arter. Me…

Discussion

Den myogene programmet, uanset undersøgte arter kan lettest studeres gennem et in vitro system. Faktisk ved isolation, myogene præcursorceller (MPCs) i fisk eller myosatellite celler (MSC) i pattedyr let ind i denne stærkt regulerede proces, der involverer proliferation, tilbagetrækning cellecyklus, og terminal differentiering af myoblaster og sammensmeltningen af ​​disse myoblaster i spirende myotuber. Den generelle mangel på transgene gen reporter stammer af piscine arter (måske med undtagelse af ze…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Forfatterne vil gerne udvide mange tak til Drs. Josep Planas og Juan Castillo for deres professionelle ekspertise inden for udvikling og anvendelse af denne kultur protokol til små fisk og padder. Også tak til de mange personer, der har utrætteligt bistået med dissektion og dissociation af muskelvæv fra mange fisk (både i art og antal), herunder Matthew Opladning, Delci Christensen, Zachary Fowler, Brooke Franzen, Nathan Froehlich, Kira Marshall, Ben Meyer, Ethan Remily, og Sinibaldo Romero. Dette arbejde blev støttet af University of Alabama i Birmingham Biologisk Institut startfonde, Center for Protease Research NIH Grant # 2P20 RR015566, NIH NIAMS Grant # R03AR055350 og NDSU Advance FREM NSF Grant # HRD-0.811.239 til PRB. Der blev også leveret af UAB Nutrition Obesity Research Center prisen # P30DK056336, NIH NIDDK. Indholdet er alene forfatternes ansvar og ikke nødvendigvisrepræsenterer de officielle synspunkter NIH.

Materials

Table 1. Detailed Reagent Information
Reagent Company (Preferred v. Alternate) Catalog Number (Preferred v. Alternate) Quantity per Culture
γ-irradiated poly-L-lysine Sigma-Aldrich (MP Biomedicals) P5899 (ICN19454405) 5 mg
DMEM (high glucose) Sigma-Aldrich (cellgro) MT-50-003-PB (D7777) 2 L
Laminin BD Biosciences (Sigma-Aldrich) CB-40232 (L2020) 1 mg
Sodium Bicarbonate (NaHCO3) Fisher Scientific (Sigma-Aldrich) BP328-500 (S5761) 1.51 g
HEPES (C8H18N2O4S) Fisher Scientific (Sigma-Aldrich) BP310-1 (H6147) 9.53 g
Antibiotic/Antimycotic Thermo Scientific (Sigma-Aldrich) SV3007901 (A5955) 17-20 mL
Gentamicin Sulfate Lonza (Sigma-Aldrich) BW17-519Z (G1397) 2-3 mL
Donor Equine Sera Thermo Scientific (Sigma-Aldrich) SH3007403 (H1270) 75 mL
Fetal Bovine Sera Thermo Scientific (Sigma-Aldrich) SH3007103 (F2442) 25 mL
Collagenase (Type IV) Worthington (Sigma-Aldrich) LS004189 (C9891) 0.44 g
Trypsin (from Pancreas) MP Biomedicals (Sigma-Aldrich) ICN15357125 (T5266) 1 g
Table 2. Consumables, Tools and Equipment
Consumable Tools Equipment
Cell Culture Plates Forceps (Coarse) Serological Pipettor
Sterile 50 mL Conical Tubes Forceps (Fine) pH Meter
Laboratory Tape Scalpel Handles Chilling Incubator (Echotherm)
0.2 μm Vacuum Sterilization Systems Scalpel Blades (#10, #11) Laminar Flow Hood
Water-repellant Autoclave Paper Surgical Scissors Vacuum Manifold
Serological Pipettes Glass Petri Dishes Microosmolality Meter
12-16 G Cannulas with Luer Locks
Table 3. Optimized Volumes for Coating Cell Culture Plates
Plate Size cm^2 per Well Poly-L-lysine* Laminin**
6 well 9.5 1.6 mL 1
24 well 1.9 0.32 0.2
48 well 0.95 0.16 0.1
96 well 0.32 0.06 0.03
*0.1 mg/mL concentration ** 0.020 mg/mL concentration
Table 4. Media for Isolation, Dissociation, and Culture
Reagent Isolation Wash Dissociation Complete
Base Medium 419.25 mL 395.40 mL 297.00 mL 178.00 mL
PSF* 5.00 mL 4.00 mL 3.00 mL 2.00 mL
Gentamicin Sulfate** 0.75 mL 0.60 mL
Donor Equine Serum 75.00 mL
Fetal Bovine Serum*** 20.00 mL
* PSF: penicillin/streptomycin/fungizone cocktail (100x); ** 50 mg/mL concentration; *** Characterized
Table 5. Recommended Dilutions and Plating Volumes
Plate Size cm^2 per Well Dilution Plating Volume
6 well 9.5 1.5-2.0×10^6 cells/mL 1 mL
24 well 1.9 1.5-2.0×10^6 cells/mL 250 μL
48 well 0.95 1.5-2.0×10^6 cells/mL 150 μL
96 well 0.32 1.5-2.0×10^6 cells/mL 50-100 μL
Table 6. Average number of cells per g tissue
Species Average # cells/g tissue
Danio rerio 6,400,000
Danio dangila 1,783,000
Devario aequipinnatus 1,797,000
Oncorhynchus mykiss 66,800
Table 7. Recommended Incubation Temperatures
Species Temperature
Danio/ Devario spp. 26 – 28 °C
Oncorhynchus/Salmo spp. 10* – 18 °C
Ambystoma mexicanum 18°C
* Lower temperatures support lower proliferation rates.

Riferimenti

  1. Rescan, P. Y., Gauvry, L., Paboeuf, G. A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes. FEBS Letters. 362 (1), 89-92 (1995).
  2. Castillo, J., Codina, M., Martinez, M. L., Navarro, I., Gutierrez, J. Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 286 (5), 935-941 (2004).
  3. Bower, N. I., Johnston, I. A. Paralogs of Atlantic salmon myoblast determination factor genes are distinctly regulated in proliferating and differentiating myogenic cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 298 (6), 1615-1626 (2010).
  4. Funkenstein, B., Balas, V., Skopal, T., Radaelli, G., Rowlerson, A. Long-term culture of muscle explants from Sparus aurata. Tissue & Cell. 38 (6), 399-415 (2006).
  5. Cornelison, D. D. Context matters: in vivo and in vitro influences on muscle satellite cell activity. Journal of Cellular Biochemistry. 105 (3), 663-669 (2008).
  6. Harris, M. Quantitative growth studies with chick myoblasts in glass substrate cultures. Growth. 21 (3), 149-166 (1957).
  7. Cornelison, D. D., Wold, B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Biologia dello sviluppo. 191 (2), 270-283 (1997).
  8. Yablonka-Reuveni, Z., et al. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Biologia dello sviluppo. 210 (2), 440-455 (1999).
  9. Yablonka-Reuveni, Z., Seger, R., Rivera, A. J. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 47 (1), 23-42 (1999).
  10. Le Moigne, A., et al. Characterization of myogenesis from adult satellite cells cultured in vitro. The International Journal of Developmental Biology. 34 (1), 171-180 (1990).
  11. Tripathi, A. K., Ramani, U. V., Patel, A. K., Rank, D. N., Joshi, C. G. Short hairpin RNA-induced myostatin gene silencing in caprine myoblast cells in vitro. Applied Biochemistry and Biotechnology. 169 (2), 688-694 (2013).
  12. Ghahramani Seno, ., M, M., et al. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization. BMC Genomics. 11, 345 (2010).
  13. Honda, M., Hosoda, M., Kanzawa, N., Tsuchiya, T., Toyo-oka, T. Specific knockdown of delta-sarcoglycan gene in C2C12 in vitro causes post-translational loss of other sarcoglycans without mechanical stress. Molecular and Cellular Biochemistry. (1-2), 323-321 (2009).
  14. Rochard, P., et al. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. The Journal of Biological Chemistry. 275 (4), 2733-2744 (2000).
  15. Jackson, M. F., Hoversten, K. E., Powers, J. M., Trobridge, G. D., Rodgers, B. D. Genetic manipulation of myoblasts and a novel primary myosatellite cell culture system: comparing and optimizing approaches. The FEBS Journal. 280 (3), 827-839 (2013).
  16. McGrew, M. J., Rosenthal, N. Transgenic analysis of cardiac and skeletal myogenesis. Trends in Cardiovascular Medicine. 4 (6), 251-256 (1994).
  17. Dong, Y., Pan, J. S., Zhang, L. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS ONE. 8 (3), (2013).
  18. Chen, Y., Melton, D. W., Gelfond, J. A., McManus, L. M., Shireman, P. K. MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiological Genomics. 44 (21), 1042-1051 (2012).
  19. Shadrach, J. L., Wagers, A. J. Stem Cells for skeletal muscle repair. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 366 (1575), 2297-2306 (2011).
  20. Wu, X., Wang, S., Chen, B., An, X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell and Tissue Research. 340 (3), 549-567 (2010).
  21. Farini, A., Razini, P., Erratico, S., Torrente, Y., Meregalli, M. Cell based therapy for Duchenne muscular dystrophy. Journal of Cellular Physiology. 221 (3), 526-534 (2009).
  22. Kim, H. J., Archer, E., Escobedo, N., Tapscott, S. J., Unguez, G. A. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Developmental Dynamics: an Official Publication of the American Association of Anatomists. 237 (10), 2830-2843 (2008).
  23. McGann, C. J., Odelberg, S. J., Keating, M. T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proceedings of the National Academy of Sciences of the United States of America. 98 (24), 13699-13704 (2001).
  24. Cosgrove, B. D., Sacco, A., Gilbert, P. M., Blau, H. M. A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation; Research in Biological Diversity. 78 (2-3), 2-3 (2009).
  25. Colbert, D. A., Edwards, K., Coleman, J. R. Studies on the organisation of the chicken genome and its expression during myogenesis in vitro. Differentiation; Research in Biological Diversity. 5 (2-3), 91-96 (1976).
  26. Bowman, L. H., Emerson, C. P. Post-transcriptional regulation of ribosome accumulation during myoblast differentiation. Cell. 10 (4), 587-596 (1977).
  27. Sun, S. S., McFarland, D. C., Ferrin, N. H., Gilkerson, K. K. Comparison of insulin-like growth factor interaction with satellite cells and embryonic myoblasts derived from the turkey. Comparative Biochemistry and Physiology. Comparative Physiology. 102 (2), 235-243 (1992).
  28. Marusich, M. F., Simpson, S. B. Changes in cell surface antigens during in vitro lizard myogenesis. Biologia dello sviluppo. 97 (2), 313-328 (1983).
  29. Schrag, J. A., Cameron, J. A. Regeneration of adult newt skeletal muscle tissue in vitro. Journal of Embryology and Experimental Morphology. 77, 255-271 (1983).
  30. Hinkle, L., McCaig, C. D., Robinson, K. R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. The Journal of Physiology. 314, 121-135 (1981).
  31. Yamane, H., Nishikawa, A. Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation. In vitro Cellular & Developmental Biology Animal. , (2013).
  32. Alexander, M. S., et al. Isolation and transcriptome analysis of adult zebrafish cells enriched for skeletal muscle progenitors. Muscle & Nerve. 43 (5), 741-750 (2011).
  33. Froehlich, J. M., Galt, N. J., Charging, M. J., Meyer, B. M., Biga, P. R. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In vitro Cellular & Developmental Biology Animal. , (2013).
  34. Gabillard, J. C., Sabin, N., Paboeuf, G. In vitro characterization of proliferation and differentiation of trout satellite cells. Cell and Tissue Research. 342 (3), 471-477 (2010).
  35. Blau, H. M., Chiu, C. P., Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 32 (4), 1171-1180 (1983).
  36. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proceedings of the National Academy of Sciences of the United States of America. 61 (2), 477-483 (1968).
  37. Yaffe, D., Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 270 (5639), 725-727 (1977).
  38. Antin, P. B., Ordahl, C. P. Isolation and characterization of an avian myogenic cell line. Biologia dello sviluppo. 143 (1), 111-121 (1991).
  39. Malatesta, M., Giagnacovo, M., Cardani, R., Meola, G., Pellicciari, C. Human myoblasts from skeletal muscle biopsies: in vitro culture preparations for morphological and cytochemical analyses at light and electron microscopy. Methods in Molecular Biology. 976, 67-79 (2013).
  40. Scott, I. C., Tomlinson, W., Walding, A., Isherwood, B., Dougall, I. G. Large-scale isolation of human skeletal muscle satellite cells from post-mortem tissue and development of quantitative assays to evaluate modulators of myogenesis. Journal of Cachexia, Sarcopenia and Muscle. , 10-1007 (2013).
  41. Baquero-Perez, B., Kuchipudi, S. V., Nelli, R. K., Chang, K. C. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biology. 13, (2012).
  42. Lu, A., et al. Isolation of myogenic progenitor populations from Pax7-deficient skeletal muscle based on adhesion characteristics. Gene Therapy. 15 (15), 1116-1125 (2008).
  43. Rouger, K., et al. Progenitor cell isolation from muscle-derived cells based on adhesion properties. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 55 (6), 607-618 (2007).
  44. Michal, J., et al. Isolation and characterization of canine satellite cells. In vitro cellular & Developmental Biology Animal. 38, 467-480 (2002).
  45. McFarland, D. C., et al. Isolation and characterization of myogenic satellite cells from the muscular dystrophic hamster. Tissue & Cell. 32 (3), 257-265 (2000).
  46. Burton, N. M., Vierck, J., Krabbenhoft, L., Bryne, K., Dodson, M. V. Methods for animal satellite cell culture under a variety of conditions. Methods in Cell Science: an Official Journal of the Society for In vitro Biology. 22 (1), 51-61 (2000).
  47. Pavlath, G. K. Isolation, purification, and growth of human skeletal muscle cells. Methods in Molecular Medicine. 2, 307-317 (1996).
  48. Rosenblatt, J. D., Lunt, A. I., Parry, D. J., Partridge, T. A. Culturing satellite cells from living single muscle fiber explants. In vitro Cellular & Developmental Biology. Animal. 31 (10), 773-779 (1995).
  49. Doumit, M. E., Merkel, R. A. Conditions for isolation and culture of porcine myogenic satellite cells. Tissue & Cell. 24 (2), 253-262 (1992).
  50. Barjot, C., Jbilo, O., Chatonnet, A., Bacou, F. Expression of acetylcholinesterase gene during in vitro differentiation of rabbit muscle satellite cells. Neuromuscular Disorders: NMD. 3 (5-6), 443-446 (1993).
  51. Pasut, A., Oleynik, P., Rudnicki, M. A. Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods in Molecular Biology. 798, 53-64 (2012).
  52. Danoviz, M. E., Yablonka-Reuveni, Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods in Molecular Biology. 798, 21-52 (2012).
  53. Musaro, A., Barberi, L. Isolation and culture of mouse satellite cells. Methods in Molecular Biology. 633, 101-111 (2010).
  54. Sherwood, R. I., et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell. 119 (4), 543-554 (2004).
  55. Yi, L., Rossi, F. Purification of progenitors from skeletal muscle. J. Vis. Exp. (49), (2011).
  56. Tamaki, T., et al. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells and Development. 17 (4), 653-667 (2008).
  57. Bosnakovski, D., et al. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells. 26 (12), 3194-3204 (2008).
  58. Montarras, D., et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309 (5743), 2064-2067 (2005).
  59. Powell, R. L., Dodson, M. V., Cloud, J. G. Cultivation and differentiation of satellite cells from skeletal muscle of the rainbow trout Salmo gairdneri. Journal of Experimental Zoology. 250 (3), 333-338 (1989).
  60. Fauconneau, B., Paboeuf, G. Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss). Cell and Tissue Research. 301 (3), 459-463 (2000).
  61. Rescan, P. Y. Muscle growth patterns and regulation during fish ontogeny. General and Comparative Endocrinology. 142 (1-2), 111-116 (2005).
  62. Johnston, I. A., Bower, N. I., Macqueen, D. J. Growth and the regulation of myotomal muscle mass in teleost fish. The Journal of Experimental Biology. 214, 1617-1628 (2011).
  63. Mommsen, T. P. Paradigms of growth in fish. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 129 (2-3), 207-219 (2001).
  64. Biga, P. R., Goetz, F. W. Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 291 (5), 1327-1337 (2006).
  65. Roy, S., Gatien, S. Regeneration in axolotls: a model to aim for! Experimental Gerontology. 43 (11), 968-973 (2008).
  66. Echeverri, K., Tanaka, E. M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science. 298 (5600), 1993-1996 (2002).
  67. Tanaka, E. M., Reddien, P. W. The cellular basis for animal regeneration. Developmental Cell. 21 (1), 172-185 (2011).
  68. Froehlich, J. M., Galt, N. J., Charging, M. J., Meyer, B. M., Biga, P. R. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In vitro Cellular & Developmental Biology Animal. 49 (5), 371-385 (2013).
  69. Seger, C., et al. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Developmental Dynamics: an Official Publication of the American Association of Anatomists. 240 (11), 2440-2451 (2011).
  70. Gabillard, J. C., Ralliere, C., Sabin, N., Rescan, P. Y. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation. BMC Biotechnology. 10, (2010).
  71. Bond, M. D., Van Wart, H. E. Purification and separation of individual collagenases of Clostridium histolyticum using red dye ligand chromatography. Biochimica. 23 (13), 3077-3085 (1984).
  72. Garikipati, D. K., Rodgers, B. D. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. The Journal of Endocrinology. 215 (1), 177-187 (2012).
  73. Sanchez-Gurmaches, J., Cruz-Garcia, L., Gutierrez, J., Navarro, I. mRNA expression of fatty acid transporters in rainbow trout: in vivo and in vitro regulation by insulin, fasting and inflammation and infection mediators. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. 163 (2), 177-188 (2012).
  74. Garikipati, D. K., Rodgers, B. D. Myostatin stimulates myosatellite cell differentiation in a novel model system: evidence for gene subfunctionalization. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 302 (9), 1059-1066 (2012).
  75. Vraskou, Y., et al. Direct involvement of tumor necrosis factor-α in the regulation of glucose uptake in rainbow trout muscle cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (3), 716-723 (1152).
  76. Cleveland, B. M., Weber, G. M. Effects of insulin-like growth factor-I, insulin, and leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary myocytes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 298 (2), 341-350 (2010).
  77. Seiliez, I., et al. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy. 8 (3), 364-375 (2012).
  78. Chapalamadugu, K. C., et al. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 153 (1), 66-72 (2009).
  79. Seiliez, I., et al. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. General and Comparative Endocrinology. 186, 9-15 (2013).
  80. Codina, M., et al. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. General and Comparative Endocrinology. 157 (2), 116-124 (2008).
  81. Seiliez, I., Sabin, N., Gabillard, J. C. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Molecular and Cellular Endocrinology. 351 (2), 220-226 (2012).
  82. Averous, J., Gabillard, J. C., Seiliez, I., Dardevet, D. Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation. Experimental Cell Research. 318 (3), 217-227 (2012).
  83. Fauconneau, B., Paboeuf, G. Sensitivity of muscle satellite cells to pollutants: an in vitro and in vivo comparative approach. Aquatic Toxicology. 53 (3-4), 247-263 (2001).
check_url/it/51354?article_type=t

Play Video

Citazione di questo articolo
Froehlich, J. M., Seiliez, I., Gabillard, J., Biga, P. R. Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages. J. Vis. Exp. (86), e51354, doi:10.3791/51354 (2014).

View Video