Summary

定量蛋白质组学使用还原二甲基化的稳定同位素标记

Published: July 01, 2014
doi:

Summary

肽的还原性二甲基化(REDI标签)稳定同位素标记是一种快速,廉价的战略精确质谱为基础的定量蛋白质组学。这里我们展示了一个可靠的方法用于制备使用可以应用于几乎任何类型的样品中的Redi途径的蛋白质混合物的分析。

Abstract

肽通过还原二甲基化(REDI标签)的稳定同位素标记的方法来准确地量化用质谱样品之间蛋白表达的差异。无论是使用常规(光)或氘(重)形式的甲醛和氰基硼氢化钠加两个甲基对每个游离胺进行REDI标签。在这里,我们展示了一个强大的协议REDI标签和复杂的蛋白质混合物的定量比较。蛋白样品用于比较被消化成肽,标记为运载轻或重的甲基标签,混合,并通过LC-MS/MS共同分析。相对的蛋白丰度,通过比较构成的肽从全MS谱中提取的重链和轻标记版本的离子色谱图的峰面积进行定量。此处描述的方法包括用反相固相萃取的样品制备,肽柱上的Redi贴标,通过碱性pH转肽分馏ersed相(BPRP)层析,并StageTip肽纯化。我们讨论REDI标签的优点和局限性相对于其它方法稳定同位素掺入。我们使用REDI标签作为一种快速,廉价,准确的方法,在几乎任何类型的样品的比较蛋白质丰度突出创新应用。

Introduction

测量复杂样品间的许多蛋白质​​的浓度差异是在蛋白质组学面临的核心挑战。越来越多地,这是由标记蛋白在每个样品中不同的同位素标记,结合样品,并用质谱定量浓度差异进行。蛋白质和多肽的稳定同位素标记的方法有几种。15 N标记12 SILAC 在体内引入同位素标记的代谢,而ICAT 3的iTRAQ 4,和二甲基化减少5蛋白的提取和消化后添加稳定同位素标记。在这些方法中,还原的二甲基化(雷迪标签)正逐渐成为一种廉价的,可再现的方法来量化在几乎任何类型的样品的蛋白质浓度差异。

雷迪标记包括使肽与甲醛以形成席夫碱,然后将其减压通过氰基。这种反应dimethylates上的N-末端和赖氨酸侧链和monomethylates N-末端脯氨酸游离氨基。这里所描述的协议甲基化的肽中的样品1使用的试剂与氢原子在其天然同位素分布和样品2使用氘化的甲醛和氰基硼氢化( 图1)一个“重”标签的“光”的标签。关于在6.0377沓轻质和重质的形式,它是采用利用质谱仪的两种形式之间进行区分之间的质量差异的肽的结果各二甲基化的氨基。具体而言,相对于肽的丰度定量为MS1的提取离子色谱图区域的光的比率(MS1峰面积之比)和重版本的每个肽的离子对。一个蛋白的相对丰度的计算方法中的所有蛋白肽中的中位数MS1峰面积之比。在这份报告中,我们描述了一个强大的协议行为ING雷迪标记实验通过LC-MS/MS,包括反相肽固相萃取,柱上的Redi标签,肽分馏由碱性pH反相(BPRP)层析,并用StageTips肽混合物的纯化( 图2) 。我们讨论使用REDI标记定量蛋白质组学的优点和局限性。

Protocol

注:此方法之前描述12。 1,蛋白质分离制备1毫克细胞蛋白通过裂解细胞,优选通过物理方法如法国压机,珠击,或超声处理。避免溶菌酶介导的细胞溶解,因为这种酶会混淆质谱测量。 2,三氯乙酸沉淀蛋白加入1倍体积的三氯乙酸(TCA),以4倍体积的冰蛋白和冷却10分钟以沉淀蛋白质。 12,000×g离心5分钟?…

Representative Results

我们使用酿酒酵母评估的准确度,精密度和雷迪标记的再现性和梭菌C.phytofermentans中全细胞裂解液。我们首先量化C的组合的REDI标记效率C.phytofermentans中的蛋白裂解物纤维素(重标记,H)和葡萄糖(光标签,L)的培养。当过滤,以1%的肽假发现率,该样品含有具有98%的Redi标记效率11194独特的肽序列。未分离S。酵母蛋白溶胞产物同样标记用H或L试剂,混合各种比?…

Discussion

几点让使用还原二甲基化(REDI标签)一个有吸引力的方法,定量蛋白质组学肽的稳定同位素标记:物美价廉标记试剂(试剂成本低于1美元的样品),反应速度快(〜10分钟),无副产物,高再现性( 图3,4),稳定的反应产物,能够使用任何蛋白酶,和标记的肽的高电离效率。由雷迪化学标记也是有利的相对于代谢标记,因为它不需要株或细胞系具有特定氨基酸营养缺陷型或生长在合…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank SP Gygi and GM Church for help and guidance. This work was supported by a CNRS chaire d’excellence to ACT.

Materials

trichloroacetic acid Sigma-Aldrich T9159 protein precipitation
acetone Sigma-Aldrich 650501 protein precipitation
Sodium dodecyl sulfate Sigma-Aldrich 71736 denature, reduce protein
sodium hydroxide Sigma-Aldrich S8045 denature, reduce protein
DL-Dithiothreitol Sigma-Aldrich 43816 denature, reduce, alkylate protein
protease Inhibitor Complete Mini Cocktail Roche 4693124001 denature, reduce protein
iodoacetamide Sigma-Aldrich I6125 alkylate protein
HEPES Sigma-Aldrich H7523 resuspend, extract, label protein
calcium chloride Sigma-Aldrich C5670 resuspend protein
Lysyl Endoprotease Wako Chemicals 129-02541 protein digestion
sequencing grade trypsin Promega V5111 protein digestion
acetic acid Sigma-Aldrich 320099 protein digestion
trifluoroacetic acid Sigma-Aldrich 299537 Reversed-phase peptide extraction
tC18 Sep-Pak C18 cartridges Waters WAT054960 Reversed-phase peptide extraction
extraction manifold Waters WAT200609 Reversed-phase peptide extraction
acetonitrile Sigma-Aldrich 14261 various
formaldehyde Sigma-Aldrich 252549 “light” peptide labeling
cyanoborohydride Sigma-Aldrich 71435 “light” peptide labeling
deuterated formaldehyde Sigma-Aldrich 492620 “heavy” peptide labeling
sodium cyanoborodeuteride CDN isotopes D-1797 “heavy” peptide labeling
MES Sigma-Aldrich M3671 peptide labeling
C18-HPLC column (4.6 x 250 mm, 5 µm particle size) Agilent 770450-902 basic pH reversed-phase chromatography
formic acid Sigma-Aldrich 399388 various
C18 Empore Disks 3M 14-386-3  STAGE tips
methanol Sigma-Aldrich 494437 STAGE tips

Riferimenti

  1. Washburn, M. P., Ulaszek, R., Deciu, C., Schieltz, D. M., Yates III, J. R. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Analytical chemistry. 74 (7), 1650-1657 (2002).
  2. Ong, S. -. E., Blagoev, B., et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics: MCP. 1 (5), 376-386 (2002).
  3. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology. 17 (10), 994-999 (1999).
  4. Ross, P. L., et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics: MCP. 3 (12), 1154-1169 (2004).
  5. Hsu, J. -. L., Huang, S. -. Y., Chow, N. -. H., Chen, S. -. H. Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chemistry. 75 (24), 6843-6852 (2003).
  6. Chick, J. M., Haynes, P. A., Molloy, M. P., Bjellqvist, B., Baker, M. S., Len, A. C. L. Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. Journal of Proteome Research. 7 (3), 1036-1045 (2008).
  7. Rappsilber, J., Ishihama, Y., Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Analytical chemistry. 75 (3), 663-670 (2003).
  8. Eng, J. K., McCormack, A. L., Yates III, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry. 5 (11), 976-989 (1994).
  9. Elias, J. E., Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature methods. 4 (3), 207-214 (2007).
  10. Bakalarski, C. E., et al. The impact of peptide abundance and dynamic range on stable-isotope-based quantitative proteomic analyses. Journal of Proteome Research. 7 (11), 4756-4765 (2008).
  11. Wilson-Grady, J. T., Haas, W., Gygi, S. P. Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods (San Diego, Calif.). , (2013).
  12. Tolonen, A. C., Haas, W., Chilaka, A. C., Aach, J., Gygi, S. P., Church, G. M. Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Molecular Systems Biology. 7, 461 (2011).
  13. Tolonen, A. C., Chilaka, A. C., Church, G. M. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Molecular Microbiology. 74 (6), 1300-1313 (2009).
  14. Munoz, J., et al. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Molecular systems biology. 7, 550 (2011).
  15. Kovanich, D., Cappadona, S., Raijmakers, R., Mohammed, S., Scholten, A., Heck, A. J. R. Applications of stable isotope dimethyl labeling in quantitative proteomics. Analytical and bioanalytical chemistry. 404 (4), 991-1009 (2012).
  16. McAlister, G. C., et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Analytical chemistry. 84 (17), 7469-7478 (2012).
  17. Boersema, P. J., Aye, T. T., Van Veen, T. A. B., Heck, A. J. R., Mohammed, S. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics. 8 (22), 4624-4632 (2008).
  18. Wu, Y., et al. Five-plex isotope dimethyl labeling for quantitative proteomics. Chemical communications (Cambridge, England). , (2014).
  19. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols. 4 (4), 484-494 (2009).
  20. She, Y. -. M., Rosu-Myles, M., Walrond, L., Cyr, T. D. Quantification of protein isoforms in mesenchymal stem cells by reductive dimethylation of lysines in intact proteins. Proteomics. 12 (3), 369-379 (2012).
  21. Chen, S. -. H., Chen, C. -. R., Chen, S. -. H., Li, D. -. T., Hsu, J. -. L. Improved N(α)-acetylated Peptide Enrichment Following Dimethyl Labeling and SCX. Journal of proteome research. 12 (7), 3277-3287 (2013).
  22. Sun, Z., et al. Capture and Dimethyl Labeling of Glycopeptides on Hydrazide Beads for Quantitative Glycoproteomics Analysis. Analytical Chemistry. 84 (20), 8452-8456 (2012).
check_url/it/51416?article_type=t

Play Video

Citazione di questo articolo
Tolonen, A. C., Haas, W. Quantitative Proteomics Using Reductive Dimethylation for Stable Isotope Labeling. J. Vis. Exp. (89), e51416, doi:10.3791/51416 (2014).

View Video