Summary

Biokjemiske analyser for å analysere Aktiviteter i ATP-avhengige Kromatin Remo Enzymer

Published: October 25, 2014
doi:

Summary

Here we describe biochemical assays that can be used to characterize ATP-dependent chromatin remodeling enzymes for their abilities to 1) catalyze ATP-dependent nucleosome sliding, 2) engage with nucleosome substrates, and 3) hydrolyze ATP in a nucleosome- or DNA-dependent manner.

Abstract

Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.

Introduction

SNF2 familie kromatin remodeling komplekser inkluderer en sentral SNF2 lignende ATPase subenhet 1,2. Noen SNF2 lignende ATPaser funksjon som enkelt subenheten enzymer, mens andre fungere som den katalytiske subenhet av større multi-subenheten komplekser. Belyse de molekylære mekanismer som hver av de underenhetene i kromatin remodeling komplekser bidra til deres virksomhet krever evne til å utføre biokjemiske analyser som dissekere remodeling prosessen.

ATP-avhengige nucleosome remodellering av den menneskelige INO80 kompleks og andre kromatin ombygging enzymer har en virkemåte som en flertrinnsprosess som starter med binding av enzymet til ombygging nucleosomes, etterfulgt av aktivering av dens DNA-og / eller nucleosome avhengig ATPase, translokasjon av ombygging enzymet på nucleosomal DNA, og eventuell omplassering av nucleosomes 1,2. Forstå de molekylære detaljene i ATP-avhengige kromatin remodeling prosessen requires disseksjon av ombygging reaksjonen i sine enkelte trinn og definisjon av bidragene av individuelle subenheter av kromatin ombygging komplekset til hvert trinn av reaksjonen. Slike analyser krever evnen til å analysere nucleosome ombygging og andre aktiviteter ved hjelp av definerte molekylære substrater in vitro.

I en tidligere Jove protokollen, beskrev vi prosedyrer som brukes til å generere INO80 kromatin remodeling komplekser og subcomplexes med definerte subenheten komposisjoner tre. Her presenterer vi tre biokjemiske analyser som gjør at kvantitativ analyse av nucleosome bindende, DNA og nucleosome-aktivert ATPase, og nucleosome remodeling aktiviteter knyttet til slike komplekser.

Protocol

1. ATP-avhengige nucleosome remodeling Analyser Å måle ATP-avhengige nucleosome remodeling aktiviteter, immunopurified INO80 eller INO80 subcomplexes inkuberes med ATP og et mononucleosomal substrat, som inneholder en enkelt nucleosome plassert i den ene enden av en 216-bp, 32 P-merket DNA-fragment. De reaksjonsprodukter blir deretter underkastet elektroforese i native poly-akrylamidgeler. For å generere 32 P-merket, '601' DNA fragment, forsterke f…

Representative Results

Tallene viser representative resultatene av biokjemiske analyser som brukes for å karakterisere INO80 aktiviteter, inkludert nucleosome skyve (figur 1) og binding (figur 2) analyser og DNA eller nucleosome avhengig ATPase-analyser (figur 3). Eksperimentet vist i figur 1 sammen evne intakte INO80 komplekser renset gjennom FLAG-Ies2 eller FLAG-INO80E og INO80 subcomplexes renset gjennom enten FLAG-Ino80ΔN eller Ino80ΔNΔHSA…

Discussion

For å sikre at nucleosome ombygging og ATPase aktiviteter vi observerer i analyser avhenger av den katalytiske aktiviteten av INO80 komplekser, og ikke på forurensende ombygging og / eller ATPase enzymer, vi rutinemessig analyse nucleosome ombygging og ATPase aktiviteten katalytisk inaktive versjoner av INO80 komplekser, renset i parallelt med villtype INO80 med samme prosedyre. En negativ kontroll reaksjon mangler ATP bør også utføres ved å analysere nucleosome ombygging aktivitet for å teste for tilstedeværels…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Work in the authors’ laboratory is supported by a grant from the National Institute of General Medical Sciences (GM41628) and by a grant to the Stowers Institute for Medical Research from the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation.

Materials

Name of Reagent/Material Company Catalog Number Comments
Protease Inhibitor Cocktail Sigma P8340
10x PCR reaction buffer  Roche Applied Science  11435094001
Roche Taq DNA Polymerase Roche Applied Science  11435094001
NucAway Nuclease-free Spin Columns  Ambion Cat. # AM10070
ultrapure ATP  USB/Affymetrix 77241 25 UM
bovine serum albumin  Sigma A9418 
N,N,N´,N´-tetramethylethylenediamine (TEMED) Thermo Scientific 17919 Fisher Scientific
40% Acrylamide/Bis 37.5:1 Amresco 0254-500ML
Sonicated salmon sperm DNAs  GE Healthcare 27-4565-01
10% ammonium persulfate (APS) Thermo Scientific 17874
benzonase  Novagen Cat. No. 70664
[α-32P] ATP (3000 Ci/mmol) PerkinElmer BLU003H250UC
dCTP, [α-32P]- 6000Ci/mmol PerkinElmer BLU013Z250UC
Equipment Company
PCR thermal cycler PTC 200 MJ Research PTC 200
Hoefer vertical electrophoresis unit Hoefer SE600X-15-1.5
lubricated 1.5ml microcentrifuge tubes  Costar 3207
Storage Phosphor Screen  Molecular Dynamics 63-0034-79
3MM filter paper Whatman  28458-005 VWR
Typhoon PhosphorImager  GE Healthcare 8600
ImageQuant software GE Healthcare ver2003.02
TLC Glass Plates, PEI-Cellulose F Millipore 5725-7
Immobilon-FL Transfer Membrane 7 x 8.4 Millipore IPFL07810
General purpose survey meter with end-window or pancake GM (Geiger-Mueller) probe Biodex Model 14C

Riferimenti

  1. Clapier, C. R., Cairns, B. R. The biology of chromatin remodeling complexes. Annual Review of Biochemistry. 78, 273-304 (2009).
  2. Narlikar, G. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154 (3), 490-503 (2013).
  3. Chen, L., Ooi, S. K., Conaway, J. W., Conaway, R. C. Generation and purification of human INO80 chromatin remodeling complexes and subcomplexes. , (2013).
  4. Lowary, P. T., Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276 (1), (1006).
  5. Owen-Hughes, T., et al. Analysis of nucleosome disruption by ATP-driven chromatin remodeling complexes. Methods Mol. Biol. 119, 319-331 (1999).
  6. Udugama, M., Sabri, A., Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell Biol. 31 (4), 662-673 (2011).
  7. Jin, J., et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. Journal of Biological Chemistry. 280 (50), 41207-41212 (1074).
  8. Chen, L., et al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. Journal of Biological Chemistry. 286 (13), 11283-11289 (2011).
  9. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A., Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell. 97 (7), 833-842 (1999).
  10. Polach, K. J., Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278-298 (1999).
  11. Anderson, J. D., Thastrom, A., Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation, Mol.Cell Biol. 22 (20), 7147-7157 (2002).
  12. Saha, A., Wittmeyer, J., Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Structural and Molecular Biology. 12 (9), 747-755 (2005).
  13. Gottschalk, A. J., et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler, Proc.Natl.Acad.Sci.U.S.A. 106 (33), 13770-13774 (2009).
  14. Clapier, C. R., Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature. 492 (7428), 280-284 (2012).
  15. Brune, M., Hunter, J. L., Corrie, J. E. T., Direct Webb, M. R. Real-Time Measurement of Rapid Inorganic Phosphate Release Using a Novel Fluorescent Probe and Its Application to Actomyosin Subfragment 1 ATPase, Biochemistry. 33 (27), 8262-8271 (1994).
  16. Luk, E., et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell. 143 (5), 725-736 (2010).
check_url/it/51721?article_type=t

Play Video

Citazione di questo articolo
Chen, L., Ooi, S., Conaway, J. W., Conaway, R. C. Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes. J. Vis. Exp. (92), e51721, doi:10.3791/51721 (2014).

View Video