Summary

血浆或尿液的水凝胶纳米粒子收获检测低丰度蛋白

Published: August 07, 2014
doi:

Summary

Several pathological biomarkers cannot be easily detected by current techniques because of their low concentration in biological fluids, the presence of degrading enzymes, and large amounts of high molecular weight proteins. Chemically functionalized hydrogel nanoparticles can harvest, preserve and concentrate low abundance proteins enabling the detection of previously undetectable biomarkers.

Abstract

新型生物标志物的发现在提供更多的敏感性和特异性疾病检测至关重要的作用。不幸的是许多存在于生物流体中低丰度生物标记物不能容易地与质谱法或免疫测定法,因为它们存在于非常低的浓度,是不稳定的,并且往往是由高丰度蛋白质,如白蛋白或免疫球蛋白掩蔽检测。诱饵含聚(N-异丙基丙烯酰胺)(NIPAM)基于纳米颗粒是能够克服这些生理屏障。在一个步骤中,他们能够捕捉,集中和保持体液的生物标记物。低分子量的分析物进入所述纳米颗粒的核心,由不同的有机的化学染料,它作为高亲和力蛋白诱饵被捕获。该纳米颗粒可以由几个数量级集中感兴趣的蛋白质。这个浓度因子是足以增加蛋白质水平,使得蛋白质内的目前质谱仪,免疫印迹和免疫检测限。纳米颗粒可以一起孵育过多的生物体液和它们能够极大丰富的低分子量蛋白质和肽的浓度,同时排除白蛋白和其它高分子量的蛋白质。我们的数据表明,在特定分析物的浓度的10,000倍放大,可以实现,使质谱和免疫检测以前无法检测的生物标志物。

Introduction

尽管完成了人类基因组测序,显著进展尚未作出确定的生物标志物预测的早期阶段的疾病,或与治疗结果,或预测1相关。其中一个原因缺乏进展是,很多潜在的生物标志物显著以低于传统质谱和其他生物标志物发现平台的检测极限浓度存在。质谱(MS)和多反应监测(MRM)具有典型的检测灵敏度大于50纳克/毫升,而在50 pg / ml和10毫微克/毫升在临床实验室下降了免疫测定的范围广大的分析物的。这意味着许多生物标志物,特别是在疾病的早期阶段无法通过常规的MS和MRM 2被检测到。除了高丰度蛋白质,如白蛋白和免疫球蛋白的复合物的生物流体的存在往往掩盖由十亿倍货存ESS的低丰度,低分子量蛋白质和肽3,4。为此几个样品的准备步骤之前所需要质谱测序和鉴定。一个这样的预备步骤中采用的高丰度蛋白质的与市售的耗尽列5-8的耗尽。不幸的是这一步骤导致候选生物标志物的产率的降低,因为它们通常是非共价地与该被除去的载体蛋白相关联。另一个挑战是候选生物标志物前体的稳定性表示,一旦样品的采集。蛋白质是发生降解内源性或外源性蛋白酶9。水凝胶的纳米颗粒可以通过扩增推定的生物标志物的浓度,以测定的范围内的电平超越这些关键的挑战,同时保护蛋白免受降解10-13。

要注意个很重要在LMW在血液中的蛋白质是小完整蛋白质以及大蛋白的片段的混合物。组织来源的蛋白质比60 kDa的较大的过大而不能穿过血管基底膜被动地进入血流,但它们可以在血液中作为肽或蛋白质片段14来表示。我们的目标是测量新颖循环生物标志物,可以是候选疾病的早期发现,患者分层为治疗,并监测对治疗的反应。在创建了纳米颗粒选择性地排除高丰度的免疫球蛋白和白蛋白,同时捕获较小的蛋白质和肽,并根据初始体积上集中起来,以100倍。

我们的团队确定了一套小的有机染料,可成功地用作高亲和力的分子饵料蛋白质和多肽。蛋白质 – 染料的结合被认为是由于疏水性和静电相互作用的结合第对染料的芳环交织经由蛋白质上的表面11的疏水口袋的蛋白质。

的毒饵,这取决于它们的化学性质,表现出分析物的选择的类的特定亲和力。诱饵与载体蛋白竞争,如白蛋白,用于蛋白质或肽。低分子量蛋白/肽被截留在颗粒中。高分子量的蛋白质,如白蛋白和球蛋白是从进入的,因为筛分能力的粒子可防止因水凝胶11(图1)的限制孔。

水凝胶粒子是通过由过硫酸铵11开始沉淀聚合合成。异丙基丙烯酰胺(NIPAM),丙烯酸(AAC)和烯丙基胺(AA)和交联剂N,N'-亚甲基双(BIS)的共聚单体被允许在70℃下反应6小时,在稀释条件11,13。聚的高蛋白结合亲和性(N-异丙基丙烯酰胺-共聚-丙烯酸)(聚(NIPAM-CO-AAC)nanoparticlesis通过共价掺入含氨基的染料( ,sulfonatedanthraquinonetriazine染料)在纳米粒子,通过实现在这取决于染料的亲水/疏水特性的水性或有机溶剂中进行的酰胺化反应如图11所示,用一个anthraquinonetriazine染料的氯原子在纳米颗粒中的胺基团的13。亲核取代被用于创建聚含染料(NIPAM -共聚-丙烯胺)(AA)的纳米颗粒11,12。的两步聚合方法被用来创建含有乙烯基磺酸(VSA)11,13的外壳的水凝胶粒子。

水凝胶纳米粒子可用于各种生物流体,包括全血,血浆,血清,脑脊液,汗液,尿等。在一个步骤中,在溶液中,nanoparticles进行快速(几分钟内)封存和低分子量的分析物浓度10,11,13,15-18。蛋白质随后从纳米颗粒洗脱和检测用蛋白质印迹19-21,质谱法10,11,13,15,18,22,23,免疫/ ELISA 10,11,15,18,或反相蛋白质微阵列16, 24测定。纳米功能化化学饵料,并提出核或核 – 壳结构,捕捉和集中的基础上饵/壳的物理化学性质的蛋白质。因此,掺入纳米颗粒不同的染料将捕获的蛋白质的不同亚群具有不同的基础上,染料亲和效率,溶液的pH,并且存在/不存在竞争的高丰度蛋白13。此外,纳米颗粒的相对量,以将溶液的体积将影响从纳米颗粒中的蛋白质的产率。这些方面水凝胶的纳米粒子的收获是使用三种不同的纳米颗粒饵收割蛋白是由含有高含量的蛋白质的血浆样品显示出,并从尿样品通常不包含大量的蛋白质。在这个协议中,我们证明收获和浓缩使用聚(NIPAM-CO-的AAc),聚(NIPAM /染料),以及核 – 壳纳米颗粒的血浆样品的肿瘤坏死因子α(TNFα)(聚(NIPAM-CO-VSA)) 。聚(NIPAM /染料)的纳米颗粒被示为集中于加入人尿样品分枝杆菌抗原,以模仿结核分枝杆菌感染的个体。

Protocol

人血浆和尿液是从健康志愿捐献者采集,并以书面的知情同意书,下面的乔治·梅森大学机构审查委员会批准的协议。捐助者平均分配白人男性和女性之间的25和42样品进行单独分析岁之间,并没有合并。 血清或血浆样品1纳米工艺在等离子体电势低丰度生物标记物被捕获,在溶液中,用凝胶粒子。将粒子加入到等离子体中,温育,通过离心分离,洗涤,和?…

Representative Results

水凝胶纳米粒子大小和均匀度 聚(NIPAM-AAC)颗粒已产生极高的收益率和可重复性的和批次内。所述颗粒具有在RT非常好的胶体稳定性期间需要用于捕获,存储,和蛋白质的洗脱(至少48小时)的时间,以及纳米颗粒沉淀没有被观察到( 图1)11。胶体稳定性可能是由该纳米颗粒快速蛋白质/肽的摄取很重要。 从血浆?…

Discussion

临床意义

血清或血浆样品被认为含有低丰度循环的蛋白质和多肽可提供的信息有关的生物体作为一个整体的国家的丰富来源。尽管血清蛋白质组学的承诺,有三个基本的和严重的生理障碍,阻碍生物标志物的发现和翻译临床获益10,11,16,25。

一,重要诊断标志物可能存在于非常低丰度(浓度)在血液中。早期病变组织,例如预转?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

迈克尔·亨利,都柏林城市大学,请协助与图5所示的数据收集和分析,这项工作得到了部分支持(1)乔治·梅森大学,(2)意大利IstitutoSuperiore二SANITA“在意大利/美国框架健康的乔治·梅森大学的美国能源部和人类服务部,以及公共卫生意大利外交部,(3)美国国立卫生研究院,IMAT计划资助1R21CA137706-01和1R33CA173359-01对上湖人,以及(4)谷神星纳米科学公司之间的合作协议。

Materials

hydrogel nanoparticles Ceres Nanoscience CS003 NanoTrap ESP particles
18 MΩ-cm water Type 1 reagent grade water
Tris HCl, 50mM pH7.0 VWR IC816116 50mM, pH 7
Acetonitrile BDH BDH1103-4LP available from VWR
Ammonium Hydroxide NH4OH BDH BDH3014 available from VWR, assayed at 28-30% NH3
sodium thiocyanate 25mM Acros Organics 419675000 for serum/plasma samples
Multi-analyte Urine Reagent Strips Siemens 2161 for urine samples
Tris-Glycine SDS Sample Buffer (2X) Life Technologies LC2676 use at room temperature to prevent SDS from precipitating
Dry bath incubator (100 oC) with heating block Barnstead 11-715-125DQ do not substitute a boiling water bath
Nitrogen evaporator manifold Organomation Associates Microvap118 for serum/plasma samples
Centrifuge, swing-out rotor Sorvall Legend series 50ml tube capacity, rcf 3700 x g
Centrifuge, fixed angle rotor Eppendorf 5424 1.7ml microcentrifuge capacity, rcf 16,000 x g
50ml conical centrifuge tubes Fisher Scientific 14-432-22 with screw caps for urine samples
1.5ml microcentrifuge tubes Eppendorf 22363204
Disposable plastic transfer pipettes Fisher Scientific 13-711-7M at least 1ml capacity
Vortex mixer Fisher Scientific 50-949-755
Timer Fisher Scientific S04782 seconds/minutes

Riferimenti

  1. Aebersold, R., Mann, M. Mass spectrometry-based proteomics. Nature. 422 (6928), 198-207 (2003).
  2. Gerszten, R. E., et al. Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs. Am J Physiol Lung Cell Mol Physiol. 295 (1), L16-L22 (2008).
  3. Merrell, K., et al. Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry. J Biomol Tech. 15 (4), 238-248 (2004).
  4. Petricoin, E. F., Belluco, C., Araujo, R. P., Liotta, L. A. The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer. 6 (12), 961-967 (2006).
  5. Camerini, S., Polci, M. L., Liotta, L. A., Petricoin, E. F., Zhou, W. A method for the selective isolation and enrichment of carrier protein-bound low-molecular weight proteins and peptides in the blood. Proteomics Clin Appl. 1 (2), 176-184 (2007).
  6. Geho, D., et al. Fractionation of serum components using nanoporous substrates. Bioconjug Chem. 17 (3), 654-661 (2006).
  7. Sennels, L., et al. Proteomic analysis of human blood serum using peptide library beads. J Proteome Res. 6 (10), 4055-4062 (2007).
  8. Zheng, X., Baker, H., Hancock, W. S. Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer. J Chromatogr A. 1120 (1-2), 173-184 (2006).
  9. Marshall, J., et al. Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res. 2 (4), 361-372 (2003).
  10. Fredolini, C., et al. Concentration and Preservation of Very Low Abundance Biomarkers in Urine, such as Human Growth Hormone (hGH), by Cibacron Blue F3G-A Loaded Hydrogel Particles. Nano Res. 1 (6), 502-518 (2008).
  11. Luchini, A., et al. Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 8 (1), 350-361 (2008).
  12. Patanarut, A., et al. Synthesis and characterization of hydrogel particles containing Cibacron Blue F3G-A. Colloids Surf A Physicochem Eng Asp. 362 (1-3), 8-19 (2010).
  13. Tamburro, D., et al. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc. 133 (47), 19178-19188 (2011).
  14. Anderson, N. L., Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 1 (11), 845-867 (2002).
  15. Fredolini, C., et al. Nanoparticle technology: amplifying the effective sensitivity of biomarker detection to create a urine test for hGH. Drug Test Anal. 1 (9-10), 447-454 (2009).
  16. Longo, C., et al. Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One. 4 (3), e4763 (2009).
  17. Luchini, A., et al. Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. Curr Mol Med. 10 (2), 133-141 (2010).
  18. Luchini, A., et al. Application of Analyte Harvesting Nanoparticle Technology to the Measurement of Urinary HGH in Healthy Individuals. J Sports Med Doping Stud. 2 (6), (2012).
  19. Eslami, A., Lujan, J., Western, blotting: sample preparation to detection. J Vis Exp. (44), (2010).
  20. Gallagher, S., Chakavarti, D. Immunoblot analysis. J Vis Exp. (16), (2008).
  21. Penna, A., Cahalan, M., , Western Blotting using the Invitrogen NuPage Novex Bis Tris minigels. J Vis Exp. (7), 264 (2007).
  22. Bosch, J., et al. Analysis of urinary human growth hormone (hGH) using hydrogel nanoparticles and isoform differential immunoassays after short recombinant hGH treatment: preliminary results. J Pharm Biomed Anal. 85, 194-197 (2013).
  23. Fredolini, C., et al. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS J. 12 (4), 504-518 (2010).
  24. Longo, C., et al. A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum. Exp Dermatol. 20 (1), 29-34 (2010).
  25. Luchini, A., Longo, C., Espina, V., Petricoin, E. F., Liotta, L. A. Nanoparticle technology: Addressing the fundamental roadblocks to protein biomarker discovery. J Mater Chem. 19 (29), 5071-5077 (2009).
  26. Douglas, T. A., et al. The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease. Biomaterials. 32 (4), 1157-1166 (2010).
  27. Prakash, A., et al. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res. 11 (8), 3986-3995 (2012).
  28. Choi, K. M., et al. Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease. Eur J Endocrinol. 158 (2), 203-207 (2008).
  29. Hughes, A. D., Clunn, G. F., Refson, J., Demoliou-Mason, C. Platelet-derived growth factor (PDGF): actions and mechanisms in vascular smooth muscle. Gen Pharmacol. 27 (7), 1079-1089 (1996).
  30. Izycki, T., et al. Serum levels of IGF-I and IGF-II in patients with lung cancer during chemotherapy. Exp Oncol. 26 (4), 316-319 (2004).
  31. Jalosinski, M., Karolczak, K., Mazurek, A., Glabinski, A. The effects of methylprednisolone and mitoxantrone on CCL5-induced migration of lymphocytes in multiple sclerosis. Acta Neurol Scand. 118 (2), 120-125 (2008).
  32. Kitazume, S., et al. Molecular insights into beta-galactoside alpha2,6-sialyltransferase secretion in vivo. Glycobiology. 19 (5), 479-487 (2009).
  33. Saito, T., et al. Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. J Immunol. 173 (1), 579-585 (2004).
  34. Struyf, S., et al. PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol. 163 (5), 2065-2075 (2003).
  35. Michael, I. P., et al. Human tissue kallikrein 5 is a member of a proteolytic cascade pathway involved in seminal clot liquefaction and potentially in prostate cancer progression. J Biol Chem. 281 (18), 12743-12750 (2006).
check_url/it/51789?article_type=t

Play Video

Citazione di questo articolo
Magni, R., Espina, B. H., Liotta, L. A., Luchini, A., Espina, V. Hydrogel Nanoparticle Harvesting of Plasma or Urine for Detecting Low Abundance Proteins. J. Vis. Exp. (90), e51789, doi:10.3791/51789 (2014).

View Video