Summary

Arricchimento per chemioresistente Ovarian Cancer Stem Cells da linee cellulari umane

Published: September 10, 2014
doi:

Summary

Le cellule staminali tumorali (CSC) sono implicati nel tumore recidiva a causa di chemioresistenza. Abbiamo ottimizzato un protocollo per la selezione ed espansione di cellule staminali tumorali da linee cellulari di carcinoma ovarico. Trattando le cellule con il cisplatino chemioterapico e coltura in una cellula staminale promuovere media che arricchiscono per le culture CSC non aderenti.

Abstract

Le cellule staminali tumorali (CSC) sono definiti come un sottoinsieme di ciclismo lento e cellule indifferenziate che si dividono asimmetricamente per generare altamente proliferative, invasive, e le cellule tumorali chemioresistenti. Pertanto, CSC sono una popolazione interessante di cellule a bersaglio terapeutico. CSC si prevede di contribuire a un certo numero di tipi di tumori maligni, compresi quelli nel sangue, cervello, polmoni, tratto gastrointestinale, della prostata e ovaie. Isolare e arricchire una popolazione di cellule tumorali per CSC permetterà ai ricercatori di studiare le proprietà, la genetica, e la risposta terapeutica di CSC. Abbiamo generato un protocollo che arricchisce riproducibile per CSC tumore ovarico da linee cellulari di cancro ovarico (SKOV3 e OVCA429). Linee cellulari sono trattate con 20 mM cisplatino per 3 giorni. Cellule sopravvissute sono isolate e coltivate in un supporto di cellule staminali senza siero contenente citochine e fattori di crescita. Dimostriamo un arricchimento di questi CSC purificati analizzando le cellule isolate per known marcatori di cellule staminali di staminalità Oct 4, Nanog, e Prom1 (CD133) e superficie cellulare espressione di CD177 e CD133. La mostra CSC aumentato chemioresistenza. Questo metodo per l'isolamento di CSC è uno strumento utile per studiare il ruolo di CSC in chemioresistenza e di recidiva del tumore.

Introduction

Resistance to chemotherapy is a major impediment to the treatment and cure of cancer. Ovarian cancer is the 5th leading cause of cancer-related deaths among women in the United States (American Cancer Society Facts and Figures 2013). Patients initially respond well to chemotherapy, but most patients relapse1. After relapse patients are treated with a variety of additional chemotherapy agents with very little benefit2. General properties of CSCs include unlimited proliferative capabilities, retention of an undifferentiated state, resistance to drug treatment, efficient DNA repair, and ability to generate malignant tumor cells with different phenotypes3. CSCs frequently exhibit expression of stem cell genes such as Nanog, Oct4, Sox2, Nestin, CD133, and CD117. CSCs often express elevated levels of ABCG2, and ALDH genes that may contribute to drug efflux and metabolism3,4.

The first definitive evidence for CSCs was demonstrated by isolating acute myeloid leukemia-initiating cells that were capable of self-renewal and tumor generation5. These leukemic stem cells expressed surface CD34 and generated leukemia in NOD/SCID (immunocompromised) mice5. Since then CSCs have been identified in many cancer types including leukemias/lymphomas, breast, bladder, colorectal, endometrial, sarcomas, hepatocellular carcinoma, melanomas, gliomas, ovarian, pancreatic, prostate, squamous cell carcinoma, and lung6. Therefore, being able to study this subtype of cancer cell is advantageous.

The goal of this study is to create a protocol for the selection and isolation of chemoresistant CSCs. Several methods have been reported for the isolation of CSCs from ovarian cancer cell lines. Non-adherent spheroids isolated from OVCAR-3, SKOV3, or HO8910 cultures demonstrate stem-like properties7,8. Isolation of CD133+ cells from OVCAR-3 cultures also yields CSCs. CSCs have also been selected in culture by treatment with chemotherapeutic agents. Treating tumor cell lines (OVCA433, Hey, and SKOV3 cells) with cisplatin and paclitaxel allows for the expansion and isolation of CSCs4,9. While culture of some cell types in CSC media leads to isolation of CSCs, SKOV3 cells did not survive culture in serum-free media or form sphere cells4. Therefore, treatment of cells with cisplatin and paclitaxel aided the expansion or isolation of this population4.

Using a modification of the procedure presented by Ma and colleagues4 we developed a method to isolate CSCs from the ovarian cancer cell lines. Our protocol is advantageous as it yields more viable cells while using less toxic chemotherapeutic agents. Cells are treated with cisplatin and subsequently grown in serum-free media supplemented with growth factors (stem cell media). We isolate the resulting non-adherent sphere cells and assay them for their expression of stem cell markers. This model enables the study of CSC properties and response to drug therapy.

Protocol

1 Cella cultura e fluorescente Etichettatura di cancro ovarico linee cellulari Preparare SKOV3 supporti: McCoy multimediale integrato con 10% di siero fetale bovino (FBS), 0,1 mM L-glutammina, 50 U / ml di penicillina, 50 mg / ml di streptomicina. Mantenere OVCA429 cellule in mezzi essenziale minimo (MEM) supplementato con 10% FBS, 1 mM piruvato di sodio, 0,1 mM L-glutammina, 50 U / ml di penicillina, e 50 mg / ml di streptomicina. Propagazione linee cellulari SKOV3 e OVCA429 in un incubatore umidif…

Representative Results

Per dimostrare che abbiamo isolato cellule staminali tumorali da linee di cellule di cancro ovarico epiteliale mediante trattamento con cisplatino, in primo luogo abbiamo acquisito le immagini delle linee cellulari prima del trattamento e dopo la selezione. Abbiamo usato la microscopia ottica per catturare immagini di aderenti (non trattato) SKOV3 e OVCA429 cellule e SKOV3 e OVCA429 CSC (Figura 1). CSC appaiono rotondo e non attaccato alle piastre di coltura tissutale (figure 1 e <stron…

Discussion

CSC che sono resistenti alla terapia possono essere responsabili di recidiva dopo il trattamento del tumore primario. Caratterizzazione della CSC può portare a migliori terapie per il cancro ovarico. I parametri critici nella creazione di CSC chemioresistenti utilizzando il protocollo di cui sopra sono cronometrando l'durata del trattamento con la chemioterapia e la concentrazione della chemioterapia. Quando si utilizza il protocollo in Ma et al. si è constatato che dopo 7 giorni di trattamento con cispla…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Serene Samyesudhas and Dr. Lynn Roy assisted in preparing samples for filming.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
McCoy Life Technologies 16600-108 Warm to 37C prior to use
DMEM / F12 serum free Life Technologies  11320-033 Warm to 37C prior to use
Minimal Essential Media Life Technologies  42360032 Warm to 37C prior to use
Sodium Pyruvate Life Technologies  11360070
Polybrene Millipore TR-1003-G
Blasticidin Life Technologies  R21001
Fetal Bovine Serum  Atlas Biologicals F-0500-A
Penicillin-streptomycin  Life Technologies 15070-063
Cisplatin Sigma-Aldrich T7402-5MG Caution: Toxic Use precautions
pLenti-suCMV-Rsv Gentarget LVP023 BSL2 approval needed
Insulin Sigma-Aldrich I-1882
Human Recombinant EGF  Cell Signaling Technology 8916LC
bFGF BD biosciences 354060
LIF Santa Cruz sc-4988A
Bovine Serum Albumin Roche 03 116 956 001
TRIzol Life Technologies 15596-018
High Capacity cDNA Reverse Transcription Kit   Applied Biosystems 4368813
IQ Multiplex Powermix BioRad 1725849
Accumax Millipore
Primers Integrated DNA Technology individually designed and ordered (see protocol for sequnces)
Anti-CD133 PE Milenyl 130-098-826 Primer/probe sets are light sensitive
CD117-Biotin Miltenly 130-098-570
AntiBiotin-FITC Miltenly 130-098-796
Paraformaldehyde Sigma-Aldrich P6148-1KG Caution: Toxic always prepare in hood and make fresh.
Trypsin Life Technologies 25300062
MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide)  Sigma-Aldrich 25200-072
EVOS Fl Epifluorescence and Transmitted Light Microscope Advanced Microscopy Group
Biorad CFX96 C1000 System Biorad
Beckman Coulter FC500 Flow Cytometer  Beckman Coulter
Spectramax 340PC384  Molecular Devices

Riferimenti

  1. Pennington, K., Pulaski, H., Pennington, M., Liu, J. R. Too Much of a Good Thing: Suicide Prevention Promotes Chemoresistance in Ovarian Carcinoma. Curr Cancer Drug Targets. 10, 575-583 (2010).
  2. Thigpen, T. A rational approach to the management of recurrent or persistent ovarian carcinoma. Clin Obstet Gynecol. 55, 114-130 (2012).
  3. Burgos-Ojeda, D., Rueda, B. R., Buckanovich, R. J. Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer letters. 322, 1-7 (2012).
  4. Ma, L., Lai, D., Liu, T., Cheng, W., Guo, L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai). 42, 593-602 (2010).
  5. Bonnet, D., Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine. 3, 730-737 (1997).
  6. Alison, M. R., Lim, S. M., Nicholson, L. J. Cancer stem cells: problems for therapy. The Journal of pathology. 223, 147-161 (2011).
  7. Luo, X., Dong, Z., Chen, Y., Yang, L., Lai, D. Enrichment of ovarian cancer stem-like cells is associated with epithelial to mesenchymal transition through an miRNA-activated AKT pathway. Cell proliferation. 46, 436-446 (2013).
  8. Wang, L., Mezencev, R., Bowen, N. J., Matyunina, L. V., McDonald, J. F. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and cellular biochemistry. 363, 257-268 (2012).
  9. Abubaker, K., et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular cancer. 12, 24 (2013).
  10. Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., Stefanovic, V. Ovarian epithelial cancer stem cells. ScientificWorldJournal. 11, 1243-1269 (2011).
  11. Liu, K. C., et al. Ovarian cancer stem-like cells show induced translineage-differentiation capacity and are suppressed by alkaline phosphatase inhibitor. Oncotarget. 4 (12), 2366-2382 (2013).
  12. Liu, T., Cheng, W., Lai, D., Huang, Y., Guo, L. Characterization of primary ovarian cancer cells in different culture systems. Oncology reports. 23, 1277-1284 (2010).
check_url/it/51891?article_type=t

Play Video

Citazione di questo articolo
Cole, J. M., Joseph, S., Sudhahar, C. G., Cowden Dahl, K. D. Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines. J. Vis. Exp. (91), e51891, doi:10.3791/51891 (2014).

View Video