Summary

Avledning av Cardiac stamceller fra embryonale stamceller

Published: January 12, 2015
doi:

Summary

In this protocol, derivation of cardiac progenitor cells from both mouse and human embryonic stem cells will be illustrated. A major strategy in this protocol is to enrich cardiac progenitor cells with flow cytometry using fluorescent reporters engineered into the embryonic stem cell lines.

Abstract

Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.

Introduction

Hjertesykdom er fortsatt den ledende årsak i verden i dag, og dødsrater har vært tilnærmet uendret de siste to tiårene (American Heart Association). Det er et kritisk behov for å utvikle nye terapeutiske strategier for effektivt å forebygge eller reversere hjertesvikt. En lovende strategi er cellebasert behandling etter den raske utviklingen av stamcelle biologi 1. I denne forbindelse, kan multipotente CPC-være en utmerket cellekilde for terapi på grunn av deres evne til å proliferere, men opptatt bare for hjerte avstamning differensiering. Derfor, effektiv og robust metode generere og isolere CPC-er av stor betydning for hjertecelle terapistudier.

Denne protokollen fokuserer på embryonale CPC identifisert under tidlig embryo og hvordan deres generasjon fra ESCs. Ulike CPC har blitt isolert fra embryonale og voksne hjerter, selv fra benmarger to. Under embryo utvikling, bein morphogemagnetiske proteiner (BMPs), vingeløse-type MMTV integrering nettstedet familiemedlemmer (Wnts) og nodal signaler indusere engasjementet til Mesp1 + multipotent mesoderm tre. Mesp1 + celler deretter differensieres til de embryonale CPC 4. Disse CPC er vanligvis preget av HCN4, NK2 homeobox 5 (Nkx2-5), Isl LIM homeobox 1 (Isl1), T-box 5 (Tbx5), og myocyte Enhancer faktor 2C (Mef2c), danner primære og andre hjerte felt, og bidra til de store deler av hjertet under cardiogenesis 5-10. Både Nkx2-5 + og Isl1 + / Mef2c + CPC er i stand til å differensiere i kardiomyocytter, glatte muskelceller (SMCS), og endotelceller 5-8. Dermed disse CPC vil gi opphav til hjerte blodkar samt hjerte vev, og er en ideell celle kilde for celle-baserte hjerteterapi. Derfor har generere CPC in vitro vært en stor forskningsfokus i hjerte-studier. Siden ESCs har ubegrenset kapasitetsutvidelse ennd representerer ICM celler på blastocyststadiet, er differensiering av ESCs til embryonale CPC følge den naturlige embryogenese betraktet som en logisk og effektiv tilnærming for å oppnå CPC.

En mye brukt metode for å skaffe CPC fra ESCs er å aggregere ESCs inn EBS 11. For å bedre differensiering effektivitet, har definert kjemiske og vekstfaktorer basert på kunnskap om hjerte utvikling blitt brukt 12-14. Det finnes imidlertid ingen definitive CPC markører, spesielt ikke noen celleoverflatemarkører som er vidt akseptert på området. For å løse dette problemet, er ESCs konstruert for å markere Isl1 + eller Mef2c + CPC og deres derivater med fluorescerende reportere bruker Cre / loxP system. Den ere rekombinase blir slått på under kontroll av Isl1 / Mef2c promoter / enhancer. Modifisert fluorescerende protein RFP eller YFP genet drevet av en konstitutiv promoter kan aktiveres ved fjerning av FLOX stoppkodon med ere rekombinase(ISL1: CRE; pCAG-FLOX-STOP-FLOX-GFP eller RFP / Isl1-cre; Rosa26YFP / Mef2c-cre; Rosa26YFP) 5,6. Når ESCs er differensiert i andre hjerte felt CPC, vil Isl1 / Mef2c promoter / enhancer drevet cre aktivere fluorescerende reportere og CPC kan bli beriket av FACS-rensing. I korthet er EB aggregering metode som brukes for å initiere ESC differensiering. For å forbedre effektiviteten differensiering, er de differensierte cellene behandlet med askorbinsyre (AA), og vekstfaktorer som Bmp4, aktivin A og VEGF 13,15. Denne protokollen tillater robust og effektiv CPC differensiering ved hjelp av både mus og menneske ESCs.

Protocol

1. Utledning av Mouse Embryonic CPC fra Mouse ESCs Forberede mus embryonale fibroblaster (MEFs) mater lag. Varm MEF-medium (10% FBS i DMEM) til 37 ° C. Forbered gelatin belagte plater. Tilsett 1 ml 0,1% gelatin i vann inn i en brønn på 6-brønners plate eller 5 ml i en 10 cm plate. La plater eller retter på 37 ° C eller romtemperatur i minst 30 min. Aspirere gelatinen før bruk. Tine bestrålt MEFs raskt i et 37 ° C vannbad med forsiktig risting….

Representative Results

Protokollen viser avledning av CPC fra flere ES cellelinjer. ESCs aggregeres til å danne EBS å differensiere i CPC. ESCs blir rutinemessig opprettholdes på MEF matere (figur 1A, F) og matere er fjernet før differensiering. Ved aggregering av ESCs inn EBS i differensieringsmedium (figur 1 B, G), er andre som dannes EBS behandlet med Bmp4 og aktivin A for å forbedre mesoderm differensiering i musecellelinjer (figur 1C). ESCs er differensiert i hjerte avstamning som e…

Discussion

This protocol combines a method using growth factors to guide mESCs differentiation and spontaneous differentiation of human ESCs into CPCs. CPC lineage marked with fluorescent reporter is used to efficiently identify and isolate CPCs by FACS. The FACS-purified CPCs retain the capacity to differentiate into cardiomyocytes, smooth muscle, and endothelial cells and have a comparable expression profile to the in vivo cells. Thus, these CPCs can serve as a great resource for cell based heart therapy because of their ability …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Leonid Gnatovskiy for his carefully and critical reading of the paper. This work was supported in part by grants from the National Institutes of Health (HL109054) and the Samuel and Jean Frankel Cardiovascular Center, University of Michigan (Inaugural Fund) to WZ and from the Leon H Charney Division of Cardiology, New York University School of Medicine to BL.

Materials

Name Company Catalog Number
FBS Thermo scentific SH30070.03E
Knockout SR Life technology 10828028
Knockout DMEM Life technology 10829018
DMEM Life technology 11965118
NEAA Life technology 11140050
GlutaMAX Life technology 35050061
N2 Life technology 17502048
B27 Life technology 12587010
Ham’s F12 Life technology 11765062
IMDM Life technology 12440061
Pen/Strep Life technology 15140122
Pyruvate Life technology 11360070
Dispase Life technology 17105041
Stempro-34 Life technology 10639011
DMEM/F12 Life technology 11330032
BSA  Life technology 15260037
Trypsin  Life technology 25200056
Ascobic Acid  Sigma A5960
1-Thioglycerol Sigma M1753
2-Mercaptoethanol Sigma M3148
VEGF R&D 293-VE
Bmp4 R&D 314-BP
ActivinA R&D 338-AC
bFgf R&D 233-FB
Fgf10 R&D 345-FG
mTeSR Stemcell technologies 5850
Matrigel BD Biosciences 354277

Riferimenti

  1. Garbern, J. C., Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 12 (6), 689-698 (2013).
  2. Passier, R., van Laake, L. W., Mummery, C. L. Stem-cell-based therapy and lessons from the heart. Nature. 453 (7193), 322-329 (2008).
  3. Bondue, A., Blanpain, C. Mesp1: a key regulator of cardiovascular lineage commitment. Circulation Research. 107 (12), 1414-1427 (2010).
  4. Bondue, A., et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 3 (1), 69-84 (2008).
  5. Bu, L., et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 460 (7251), 113-117 (2009).
  6. Lei, I., Gao, X., Sham, M. H., Wang, Z. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. The Journal of Biological Chemistry. 287 (29), 24255-24262 (2012).
  7. Lei, I., Liu, L., Sham, M. H., Wang, Z. SWI/SNF in cardiac progenitor cell differentiation. Journal of Cellular Biochemistry. 114 (11), 2437-2445 (2013).
  8. Wu, S. M., et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 127 (6), 1137-1150 (2006).
  9. Spater, D., et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nature Cell Biology. 15 (9), 1098-1106 (2013).
  10. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E., Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Biologia dello sviluppo. 287 (1), 134-145 (2005).
  11. Boheler, K. R., et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research. 91 (3), 189-201 (2002).
  12. Wada, R., et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), 12667-12672 (2013).
  13. Kattman, S. J., et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8 (2), 228-240 (2011).
  14. Takahashi, T., et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 107 (14), 1912-1916 (2003).
  15. Wamstad, J. A., et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 151 (1), 206-220 (2012).
  16. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  17. Ding, Q., et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 12 (4), 393-394 (2013).
  18. Gaj, T., Gersbach, C. S., Barbas, T. A. L. E. N. ZFN, TALEN, CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 31 (7), 397-405 (2013).
  19. Joung, J. K., Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology. 14 (1), 49-55 (2013).
  20. Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 154 (6), 1370-1379 (2013).
  21. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823-826 (2013).
  22. Laflamme, M. A., et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature. biotechnology. 25 (9), 1015-1024 (2007).
  23. Burridge, P. W., et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS One. 6 (4), e18293 (2011).
  24. Kouskoff, V., Lacaud, G., Schwantz, S., Fehling, H. J., Keller, G. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America. 102 (37), 13170-13175 (2005).
  25. Xu, X. Q., et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation: Research in Biological Diversity. 76 (9), 958-970 (2008).
  26. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America. 109 (27), E1848-1857 (2012).
  27. Bizy, A., et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Research. 11 (3), 1335-1347 (2013).

Play Video

Citazione di questo articolo
Lei, I. L., Bu, L., Wang, Z. Derivation of Cardiac Progenitor Cells from Embryonic Stem Cells. J. Vis. Exp. (95), e52047, doi:10.3791/52047 (2015).

View Video