Summary

原发性肿瘤和/或转移相关的临床前和治疗的临床开发的离体处理响应

Published: October 02, 2014
doi:

Summary

建立癌症细胞系和裸鼠已经癌症研究的中流砥柱,在过去的几十年。然而,最近的证据表明,治疗响应在很大程度上是通过肿瘤细胞微环境的影响。因此,我们开发了原发肿瘤标本进行药物开发目的的体外分析。

Abstract

The molecular analysis of established cancer cell lines has been the mainstay of cancer research for the past several decades. Cell culture provides both direct and rapid analysis of therapeutic sensitivity and resistance. However, recent evidence suggests that therapeutic response is not exclusive to the inherent molecular composition of cancer cells but rather is greatly influenced by the tumor cell microenvironment, a feature that cannot be recapitulated by traditional culturing methods. Even implementation of tumor xenografts, though providing a wealth of information on drug delivery/efficacy, cannot capture the tumor cell/microenvironment crosstalk (i.e., soluble factors) that occurs within human tumors and greatly impacts tumor response. To this extent, we have developed an ex vivo (fresh tissue sectioning) technique which allows for the direct assessment of treatment response for preclinical and clinical therapeutics development. This technique maintains tissue integrity and cellular architecture within the tumor cell/microenvironment context throughout treatment response providing a more precise means to assess drug efficacy.

Introduction

发展有效的癌症疗法已被证明是极具挑战性的。肿瘤细胞系和肿瘤外植体-以及异种移植物已被用于癌症研究的半个多世纪1,2,3。迄今为止,药物敏感性和抗性均建立肿瘤细胞系和来自患者的异种移植物中的分子分析(PDX)是不可缺少的。然而,在建立的肿瘤细胞系的化合物的检测是不经常的预测在体内的药效,并对应在体内研究中的动物,特别是在PDX模型,是非常昂贵和费时的。这些模型系统,即无法告知的原生微环境中肿瘤进展和应对治疗策略的影响的局限性,导致了研究领域,开发更多的方法来赞美这些分析。近期,高度地注意对病人TUM的体外分析或外植体4,5由于较大的理解是癌的治疗反应是不排斥对癌细胞的内在分子组成,而是由肿瘤细胞微环境6,7一项功能,不能用传统的培养方法和可概括的影响很大/或PDX。 体外分析在上述情况下( ,相邻的周围的肿瘤细胞微环境的影响)意味着可行原发性肿瘤/转移部分的评估,而不是细胞株8,9体外分析。

我们在这里报告的离体技术( ,精确切片新鲜组织切片)既患者的原发肿瘤和转移相关( ,淋巴结),忠实地通知关于反应(IC 50),脱靶效应,并允许分子分析性和反馈机制。此外,相关therape分析UTIC敏感性/抗性与生物标记物和基因表达图谱可以在努力确定患者更可能对实验药物的兴趣响应来执行( ,高的药物响应相匹配的患者与特定生物信息)。在体外的技术和评估的多参数的方式中的应用是对病人的选择和临床疗效的整体改善运动。

体外治疗反应的分析可以成为癌症治疗的临床前和临床开发的标准工具,并设想为对治疗性发展战略的一个个性化医疗方法的一个步骤。

Protocol

注:病人组织采购是通过制度化审查委员会(IRB)批准-approved生物样本和临床协议(协议号09-121和11-041,分别)在纪念Sloan Kettering癌症中心。 1,组织采购患者原发肿瘤/转移采购注:迄今为止,该协议已经在手术切除胰腺癌,胃癌和乳腺癌的肿瘤类型,以及,淋巴瘤转移进行。 直接手术团队提供样品通过快递或气动管道系统的病理学部门在无菌防溢容器密?…

Representative Results

在这项研究中, 体外技术,用在热休克蛋白90抑制剂(Hsp90i)治疗敏感性/抗性的相关性分析。在此Hsp90i,乳腺癌原发肿瘤中,ER +浸润性导管癌(IDC),以及相关的淋巴结转移的临床前评估,分析体外对治疗的反应  ( 图1)。多个200微米的连续切片分别用车辆之用,增加剂量的Hsp90i(0.25,0.50,1.0和2.5μM)。 图1中的数据表示福尔马林固定,?…

Discussion

试图制定有效的治疗策略时,癌症生物学家面临显著挑战。在开发上建立肿瘤细胞系测试药物不能准确地反映体内响应和上PDX模型体内实验是劳动密集型的并且非常昂贵。鉴于上述情况,原发性患者的体外技术的应用肿瘤14,15现在位于建立肿瘤细胞系和患者来源的异种移植物(PDX)的分子分析的旁边。

本文以体外技术的应用推向?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank the MSKCC Tissue Procurement Service Team (TPS), specifically, Maria Corazon Mariano, Priscilla McNeil, Anas Idelbi, Daniel Navarrete and Katrina Allen, in all of their efforts in the successful pursuit of this project and funding from the following sources: 5 R21 CA158609-02 and the Conquer Cancer Foundation and the Breast Cancer Research Foundation. In addition, the authors would like to thank Eric Cottington PhD, Vice President of the Office of Research and Project Administration, the Office of Technology Development, Research Outreach and Compliance and RTM Information Systems Support, in the support of the submission of this manuscript.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Vibratome Leica VT1000s Leica 14047235613
UltraPure agarose Invitrogen 16500500 Prepare 4% and 6% before use
Injector blade Ted Pella 121-4
MEM with Penicillin  + Streptomycin Media Core Facilities (MSKCC) The media is prepared at Memorial Sloan Kettering Cancer Center 
Scalpel no. 10 Thermo Scientific 31-200-32
Disposable forceps Cole-Parmer 84011182
Embedding mold Electron Microscopy Science 70181
FBS (heat inactivated) Gemini 100106
24 well plates Corning 3524
Formalin (10%) Sigma Diagnostics SDHT501128 
16% Formaldehyde solution Thermo Scientific 28908
Embedding microsettes Simport M503-2
Ethanol (70%) Fisher Scientific A405P-4
Waterbath Fisher Scientific 15-462-2SQ
Microwave General Electric ModelJES2051DNBB
Adhesive (Ethyl Cyanoacrylate) Sigma-Aldrich E1505-5G
10mm dishes BD Falcon 353003
15ml tubes BD Falcon 352096

Riferimenti

  1. Abercrombie, M., Ambrose, E. J. Interference Microscope Studies of Cell Contacts in Tissue Culture. Experimental Cell Research. 15 (58), 332-345 (1958).
  2. Coriell, L. L., McAllister, R. M., Wagner, B. M. Criteria for Determining Malignancy in Tissue-Culture Cell Lines in the Albino Rat. New York Academy of Science. 5, 351-355 (1957).
  3. Paul, J. The Cancer Cell in Vitro: A Review. Ricerca sul cancro. 22, 431-440 (1962).
  4. Dean, J. L., et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analysis of human tumors. Cell Cycle. 11 (14), 2756-2761 (2012).
  5. Bray, K., et al. Bcl-2 Modulation to Activate Apoptosis in Prostate Cancer. Molecular Cancer Research. 7 (9), 1487-1496 (2009).
  6. Quail, D. F., Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine. 19 (11), 1423-1437 (2013).
  7. Nakasone, E. S., et al. Imaging Tumor-Stroma Interactions during Chemotherapy Reveals Contributions of the Microenvironment to Resistance. Cancer Cell. 21, 488-503 (1016).
  8. Shi, Y., Hogue, J., Dixit, D., Koh, J., Olson, J. A. Functional and genetic studies of isolated cells from parathyroid tumors reveal the complex pathogenesis of parathyroid neoplasia. PNAS. 111 (8), 3092-3097 (2014).
  9. Vidal, S. J., et al. Isolation of cancer stem cells from human prostate cancer samples. J. Vis. Exp. (85), e51332 (2014).
  10. Wanping, X., Neckers, L. Targeting the Molecular Chaperone Heat Shock Protein 90 Provides a Multifaceted Effect on Diverse Cell Signaling of Cancer Cells. Clinical Cancer Research. 13, 1625-1629 (2007).
  11. Moulick, K., et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nature Chemical Biology. 7 (11), 818-826 (1038).
  12. Alpaugh, M. L., Tomlinson, J. S., Ye, Y., Barsky, S. H. Relationship of sialyl-Lewis(x/a) underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast cancer. American Journal of Pathology. 161 (2), 619-628 (2002).
  13. Chu, K., Boley, K. M., Moraes, R., Barsky, S. H., Robertson, F. M. The paradox of E-cadherin: role in response to hypoxia in the tumor microenvironment and regulation of energy metabolism. Oncotarget. 4 (3), 446-462 (2013).
  14. Vaira, V., et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS. 107 (18), 8352-8356 (2010).
  15. Centenera, M. M., Raj, G. V., Knudsen, K. E., Tilley, W. D., Butler, L. M. Ex vivo culture of human prostate tissue and drug development. Nature Reviews Urology. 10, 483-487 (2013).
  16. Jhaveri, K., et al. Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opinion on Investigational Drugs. 5, 611-628 (2014).
  17. Gerecitano, J. F., et al. Using 124-PU-H71PET imaging to predict intratumoral concentration in patients on a phase I trial of PU-H71. Journal of Clinical Oncology. 31, 11076-11 (2013).
  18. Yildiz-Aktas, I., Dabbs, D. J., Bhargava, R. The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma. Modern Pathology. 25, 1098-1105 (2012).
check_url/it/52157?article_type=t

Play Video

Citazione di questo articolo
Corben, A. D., Uddin, M. M., Crawford, B., Farooq, M., Modi, S., Gerecitano, J., Chiosis, G., Alpaugh, M. L. Ex Vivo Treatment Response of Primary Tumors and/or Associated Metastases for Preclinical and Clinical Development of Therapeutics. J. Vis. Exp. (92), e52157, doi:10.3791/52157 (2014).

View Video