Summary

की व्युत्पत्ति और विशेषता एक transgene मुक्त मानव प्रेरित pluripotent परिभाषित क्लीनिकल ग्रेड की स्थिति में सेल लाइन और रूपांतरण स्टेम

Published: November 26, 2014
doi:

Summary

We describe a protocol for deriving lentiviral-based reprogrammed and characterized factor-free human induced pluripotent stem cells and conversion into putative clinical-grade conditions.

Abstract

मानव प्रेरित स्टेम कोशिकाओं (hiPSCs) lentiviral आधारित reprogramming के तरीके के साथ उत्पन्न किया जा सकता है। हालांकि, जीनोम के लिए सक्रिय रूप से लिखित क्षेत्रों में शेष संभावित oncogenic जीनों के निशान, मानव चिकित्सीय अनुप्रयोगों एक में उपयोग के लिए अपनी क्षमता की सीमा। इसके अतिरिक्त, उपचारात्मक प्रासंगिक डेरिवेटिव में स्टेम सेल reprogramming या भेदभाव से व्युत्पन्न गैर मानव एंटीजन एक मानव नैदानिक ​​संदर्भ 2 में इस्तेमाल किया जा रहा से इन hiPSCs रोकता। इस वीडियो में, हम reprogramming और exogenous transgenes की मुक्त कारक मुक्त hiPSCs का विश्लेषण करने के लिए एक प्रक्रिया प्रस्तुत करते हैं। ये hiPSCs तो lentivirus युक्त विशिष्ट Intron में जीन की अभिव्यक्ति असामान्यताओं के लिए विश्लेषण किया जा सकता है। इस विश्लेषण में पहले जीन अभिव्यक्ति मतभेद तीन का पता लगाने के लिए इस्तेमाल कम संवेदनशील तकनीकों पर एक फायदा है जो संवेदनशील मात्रात्मक पोलीमरेज़ चेन रिएक्शन (पीसीआर), का उपयोग किया जा सकता है। में पूर्ण रूपांतरणनैदानिक ​​ग्रेड अच्छा विनिर्माण प्रैक्टिस (जीएमपी) की स्थिति, मानव नैदानिक ​​प्रासंगिकता अनुमति देता है। हमारी प्रोटोकॉल प्रदान करता है एक और कार्यप्रणाली-प्रदान की मौजूदा सुरक्षित बंदरगाह मापदंड का विस्तार करने और मानव चिकित्सीय अनुप्रयोगों के लिए न होने के कारण मानव एंटीजन को किसी भी प्रतिरक्षाजनकता जोखिम को खत्म करना चाहिए जो जीएमपी ग्रेड hiPSCs, पाने के लिए कारक मुक्त विशेषता hiPSC आधारित डेरिवेटिव शामिल होंगे। इस प्रोटोकॉल के किसी भी प्रकार के lentiviral reprogrammed कोशिकाओं के लिए मोटे तौर पर लागू है और जीएमपी ग्रेड स्थितियों में reprogrammed कोशिकाओं में परिवर्तित करने के लिए एक प्रतिलिपि प्रस्तुत करने योग्य तरीका प्रदान करता है।

Introduction

Adult human cells have been shown to be capable of undergoing epigenetic remodeling and reprogramming, as a result of lentiviral-based expression of four key transcription factors4,5. An important advancement in the reprogramming field was the use of a single excisable lentiviral stem cell cassette (STEMCCA), which housed all four reprogramming transcription factors that allowed a precise stoichiometric ratio of protein expression6. Additionally, when transduced in specific multiplicity of infection ranges, STEMCCA can lead to predominantly single genomic integration events during the reprogramming process7. The introduction of an excisable version of STEMCCA, which utilizes Cre/loxP technology followed by excision of the reprogramming vector after derivation of the stem cell line, enabled factor-free human induced pluripotent stem cell (hiPSC) lines to be derived8. Additionally, in order to enhance therapeutic applications of hiPSCs, a novel, quick, and readily applicable methodology for good manufacturing practice (GMP)-grade cell line conversion, from xeno-containing to xeno-free conditions, needed to be implemented. Here, we discuss a relevant methodology that more precisely assesses integrated gene expression differences, specifically when integrated into an intron, and clinical-grade cell conversion into putative GMP conditions.

Previous research has used only relatively insensitive microarray transcriptional analysis to analyze gene expression differences in integrated genes after STEMCCA transduction3,9. Here, we introduce the methodology of sensitive quantitative polymerase chain reaction (PCR) analysis, to further examine integrated gene expression differences. Importantly, current safe-harbor criteria discard hiPSCs that have genes with viral integrations, thus limiting the applicability of these cells for downstream human cellular therapeutics9. We propose that the status quo may change with the use of fully characterized and transgene-free intronically reprogrammed hiPSCs. Additionally, we introduce a robust GMP-grade cell conversion protocol that can be readily applied to a variety of different cell types, which were originally derived under xeno-containing conditions10. This provides significant opportunities for the development of future cell reprogramming experiments, which require clinical-grade conditions to maintain human therapeutic relevance.

These methodologies provide a foundation upon which current safe-harbor criteria may be expanded to include characterized STEMCCA reprogrammed hiPSC lines that maintain a normal gene expression profile after STEMCCA excision from the integrated intron. Also, full conversion into clinical-grade conditions, free from non-human animal antigens, will help to incorporate many more cell types, which have previously been reprogrammed and characterized only in xeno-containing conditions. These methodologies combined, are persuasive grounds for the US Food and Drug Administration (FDA) to consider expanding their limited approval from human embryonic stem cell (ESC)-based therapeutics to hiPSC-based therapeutics11.

We recently detailed the derivation of a factor-free hiPSC line that was fully characterized and converted into putative clinical-grade conditions10. Here, we detail the protocol for hiPSC derivation by utilizing the STEMCCA lentivirus. These stem cells then undergo an excision process followed by gene expression characterization. Finally, the hiPSCs are converted over into GMP-grade conditions by a slow conversion methodology.

Protocol

नोट:। इस विधि श्रद्धा एट अल 10 में रिपोर्ट अनुसंधान में इस्तेमाल किया गया था। STEMCCA साथ 1. Reprogramming वयस्क मानव त्वचीय Fibroblasts पिघलना वयस्क त्वचीय मानव fibroblasts (एचयूएफ), 2 मिनट के लिए एक 37 डिग्री ?…

Representative Results

हम STEMCCA lentiviral आधारित reprogramming के दृष्टिकोण का उपयोग करके नैदानिक ​​ग्रेड कारक मुक्त hiPSCs पाने के लिए एक प्रोटोकॉल प्रस्तुत करते हैं। चित्रा 1 ए MEFs की एक परत पर STEMCCA दृष्टिकोण के साथ reprogramming के बाद, तीन अलग-पूर्व …

Discussion

हम कारक मुक्त hiPSCs पाने और भविष्य के मानव चिकित्सा विज्ञान में नीचे की ओर सेल भेदभाव के लिए जीएमपी ग्रेड स्थितियों में इन कोशिकाओं को परिवर्तित करके उन्हें नैदानिक ​​प्रासंगिक बनाने की एक पद्धति का वर्…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We would like to thank Patrick C. Lee, Cyril Ramathal, and Saravanan Karumbayaram (SK) for their assistance in performing the iPSC derivation and characterization experiments; Aaron Cooper for performing the iPSC analysis experiments; Vittorio Sebastiano and Renee A. Reijo Pera for directing the initial reprogramming efforts; SK, William E. Lowry, Jerome A. Zack, and Donald B. Kohn for directing the establishment of the UCLA GMP facilities permitting the conversion and characterization of clinical-grade iPSCs; Gustavo Mostoslavsky for providing us with the STEMCCA polycistronic reprogramming vector. This work is based on a research collaboration with Fibrocell Science and the Clinical Investigations for Dermal Mesenchymally Obtained Derivatives (CIDMOD) Initiative to generate safe personalized cellular therapeutics. This work was supported by funding from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, The Phelps Family Foundation, Fibrocell Science, Inc., and the UCLA CTSI Scholar’s Award to JAB.

Materials

Name Company Catalog Number Comments
Media and reagents
DMEM/F12 (basal media) Invitrogen (Carlsbad, CA, USA) 11330057
Fetal bovine serum Invitrogen 16000044
Minimum essential medium (MEM) non-essential amino acids (NEAA), 100x Invitrogen 11140050
Glutamax, 100x Invitrogen 35050-061
PenStrep, penicillin-streptomycin, 100x Invitrogen 15140-122 Thaw at 4 °C, aliquot and store at −20 °C
Knockout serum replacement Invitrogen 10828028 Thaw at 4 °C, aliquot and store at −20 °C
Trypsin/EDTA, 0.5% Invitrogen 15400-054 Dilute stock out to 0.05% in 1x PBS
Basic fibroblast growth factor GlobalStem (Rockville, MD, USA) GSR-2001 Reconstitute to 10 µg/ml stock in 0.1% bovine serum albumin dissolved in 1x PBS and store at −80 °C
β-mercaptoethanol Millipore (Billerica, MA, USA) ES-007-E
Matrigel (basement membrane matrix) BD Biosciences (San Jose, CA, USA) 356231 Dilute stock Matrigel vial with 10 ml of DMEM/F12 while on ice for a 1:2 dilution. Aliquot and store at −20 °C
CELLstart (Synthetic Substrate) Invitrogen A1014201
Stemmolecule Y27632 Stemgent (Cambridge, MA, USA) 04-0012-02
Puromycin Invitrogen A1113802
LightCycler 480 Probes Master Roche (Basel, Switzerland) 4707494001
ProFreeze-CDM Medium/freezing medium Lonza (Basel, Switzerland) 12-769E
Dimethyl sulfoxide Sigma-Aldrich (St. Louis, MO, USA) D8418
PBS Invitrogen 14190-250
100 BP DNA Ladder Invitrogen 15628019
SYBR Safe DNA Gel Stain 10000x Invitrogen S33102
Agarose Bio-Rad Laboratories, Inc. (Hercules, CA, USA) 161-3101
Gelatin, from porcine skin Sigma-Aldrich G1890-100G Make stock at 0.2% in PBS, autoclave and store at room temperature
mTeSR1 StemCell Technologies (Vancouver, BC, Canada) 5850 Combine Supplement 5X with the basic medium, aliquot and store at 4 °C for up to 2 weeks. 
Stemedia NutriStem XF/FF Culture Medium Stemgent 05-100-1A Thaw at 4 °C O/N, aliquot and store at 4 °C for up to 2 weeks.
Primocin InvivoGen (San Diego, CA, USA) ant-pm-1
Accutase (Dissociation Reagent) Invitrogen A1110501
Donkey anti-Chicken IgG AlexaFluor 488 Jackson ImmunoResearch (West Grove, PA, USA) 703-546-155
Polybrene/transfection agent Millipore TR-1003-G
Plasticware
12-well plates VWR (West Chester, PA, USA) 29442-038
6-well plates VWR 29442-042
10-cm plates Sigma-Aldrich Z688819
18-gauge needle Fisher Scientific (Pittsburgh, PA, USA) 148265D
21-gauge needle Fisher Scientific 14-829-10D
Equipment
BD LSRII Flow Cytometer KSystem by Nikon (Tokyo, Japan)
BD FACSDiva Version 6.1.3 Software BD Biosciences
Kits
PureLink Genomic DNA Mini Kit Invitrogen K182000
KAPA HiFi Hotstart ReadyMix PCR Kit KAPA Biosystems (Wilmington, MA, USA) KK2601
High Pure RNA Isolation Kit Roche 11828665001
Transcriptor First Strand cDNA Synthesis Kit Roche 4379012001
Sialix anti-Neu5Gc Basic Pack Kit Sialix (Newton, MA, USA) Basic Pack
Media
Combined media 1 StemCell Technologies and Stemgent Consists of equal parts mTeSR1 and Nutristem
Combined media 2 StemCell Technologies and Stemgent Consists of equal parts TeSR2 and Nutristem
HUF Media Dulbecco’s modified Eagle’s medium/F12 [DMEM/F12] supplemented with 10% fetal bovine serum, 1x non-essential amino acids, 1x Glutamax, and 1x Primocin
Human Pluripotent Stem Cell Media DMEM/F12 supplemented with 20% knockout serum replacement, 1x Glutamax, 1x non-essential amino acids, 1x Primocin, 1x β-mercaptoethanol, and 10 ng/ml basic fibroblast growth factor
DMEM/F12, Dulbecco’s modified Eagle’s medium/F12; PBS, phosphate-buffered saline.

Riferimenti

  1. Sommer, C. A., Mostoslavsky, G. The evolving field of induced pluripotency: Recent progress and future challenges. J Cell Physiol. 228, 267-275 (2013).
  2. Lu, H. F., et al. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials. 35, 2816-2826 (2014).
  3. Karumbayaram, S., et al. From skin biopsy to neurons through a pluripotent intermediate under Good Manufacturing Practice protocols. Stem Cells Transl Med. 1, 36-43 (2012).
  4. Mostoslavsky, G. Concise review: the magic act of generating induced pluripotent stem cells: many rabbits in the hat. Stem Cells. 30, 28-32 (2012).
  5. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  6. Sommer, C. A., et al. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells. 27, 543-549 (2009).
  7. Somers, A., et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells. 28, 1728-1740 (2010).
  8. Sommer, C. A., et al. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells. 28, 64-74 (2010).
  9. Papapetrou, E. P., et al. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol. 29, 73-78 (2011).
  10. Awe, J. P., et al. Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Res Ther. 4, (2013).
  11. . Receives FDA Clearance to Begin World’s First Human Clinical Trial of Embryonic Stem Cell-Based Therapy. Geron Corporation Press Release. , (2009).
  12. Jozefczuk, J., Drews, K., Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp. 64, 3810-383791 (2012).
  13. Mitani, K., Kubo, S. Adenovirus as an integrating vector. Curr Gene Ther. 2, 135-144 (2002).
  14. Patterson, M., et al. Defining the nature of human pluripotent stem cell progeny. Cell Res. 22, 178-193 (2012).
  15. Schroder, A. R., et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 110, 521-529 (2002).
  16. Hockemeyer, D., et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 29, 731-734 (2011).
check_url/it/52158?article_type=t

Play Video

Citazione di questo articolo
Awe, J. P., Vega-Crespo, A., Byrne, J. A. Derivation and Characterization of a Transgene-free Human Induced Pluripotent Stem Cell Line and Conversion into Defined Clinical-grade Conditions. J. Vis. Exp. (93), e52158, doi:10.3791/52158 (2014).

View Video