Summary

La investigación de las proteínas priónicas, como la extensión y la toxicidad de Uso del Metazoan Organismo modelo<em> C. elegans</em

Published: January 08, 2015
doi:

Summary

Prion-like propagation of protein aggregates has recently emerged as being implicated in many neurodegenerative diseases. The goal of this protocol is to describe, how to use the nematode C. elegans as a model system to monitor protein spreading and to investigate prion-like phenomena.

Abstract

Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans.

Introduction

Muchas de las enfermedades neurodegenerativas, como la enfermedad de Alzheimer (EA), enfermedad de Parkinson (EP), la esclerosis lateral amiotrófica (ELA), y las encefalopatías espongiformes transmisibles (EET), se asocian con proteínas de agregación propensos y están, por tanto, colectivamente conocidos como proteínas misfolding trastornos (PMD ). EET o enfermedades priónicas constituyen una clase única de PMD en que pueden ser infecciosas en seres humanos y animales 1. A nivel molecular, los priones se replican mediante el reclutamiento y la conversión-rica α-hélice PrP celular codificada por el hospedador monomérico (PrP C) en el rico en β-hoja de PrP Sc conformación patológica 2,3. Agregados de proteínas autopropagante también se han identificado en los hongos, que comparten características importantes con priones mamíferos 4,5. Además, priones mamíferos son capaces de pasar de célula a célula e infectan células de los animales 6,7.

Mientras PMD other de EET no son infecciosas, comparten un principio patógena común con las enfermedades priónicas 8,9. Aunque las proteínas vinculadas a cada uno de los PMD no están relacionadas en estructura o función, que todos los agregados formulario a través de un proceso de cristalización como llaman nucleado o polimerización sembraron; Además semillas proteicas crecen mediante la contratación de sus isoformas solubles 2,10,11. La eficiencia a la auto-propagan in vivo varía, dependiendo de las propiedades intrínsecas de la proteína, que junto con factores celulares adicionales, tales como chaperones moleculares en última instancia determinan las tasas de nucleación agregada, la siembra, la fragmentación y la difusión de 12-15. Por lo tanto, debe existir un equilibrio entre estos factores que permiten la propagación eficiente de la agregación de proteínas. Esto también podría explicar por qué sólo algunos agregados amiloidogénicos albergan las características de un prión, y por lo tanto no todos los PMD son infecciosos. Los priones parecen representar o 'top artistas intérpretes o ejecutantesfa amplio espectro de agregados proteicos auto-replicantes, que los convierte en una poderosa herramienta para estudiar PMD 8,13.

Curiosamente, la toxicidad asociada con los agregados relacionados con la enfermedad tiene a menudo un componente autónomo no celular 16,17. Esto significa que afectan a las células vecinas que no expresan el gen correspondiente, en contraste con un efecto de célula autónoma estrictamente, lo que implica que sólo las células que expresan el gen de la exposición fenotipo específico. Esto fue convincentemente demostrado por la expresión específica de tejido o derribar las respectivas proteínas en numerosos modelos de enfermedades neurodegenerativas 18-26. Diversos mecanismos se han sugerido como una base para esta toxicidad autónoma no celular en PMD, incluyendo el suministro de nutrientes disminuido, el desequilibrio en la señalización neuronal, excitotoxicidad del glutamato, y la neuroinflamación 16,27,28. Además, un movimiento de priones como de agregados de enfermedades vinculadas entre las células Might contribuyen a este aspecto 29,30. La evidencia creciente sugiere que las inclusiones proteína distinta de priones pueden transmitir de célula a célula, lo que puede explicar la característica de propagación de la patología observado en muchos PMD 30-36. Sin embargo, aún no se ha determinado si existe una clara relación causal entre el movimiento intercelular de proteínas de la enfermedad y el efecto tóxico sobre las células vecinas. Por lo tanto, una mejor comprensión de las vías celulares que subyacen a la transmisión de célula a célula y la toxicidad celular autónomo no es necesario y esencial para el desarrollo de nuevas terapias. Sin embargo, muchos aspectos de priones como la difusión y celulares factores que influyen en la transmisión de célula a célula de proteínas mal plegadas en metazoos no se conocen bien, en particular a nivel del organismo.

El nematodo Caenorhabditis elegans tiene varias ventajas que ofrecen el potencial de descubrir nuevas facetas de priones como spreading en metazoos 17. Es transparente, lo que permite el seguimiento in vivo de las proteínas fluorescentemente marcadas en el organismo vivo. Además, muchos procesos celulares y fisiológicas afectadas por la enfermedad se conservan de gusanos para la salud humana, y C. elegans también es susceptible a una amplia variedad de manipulaciones genéticas y análisis moleculares y bioquímicos 37-39. Exactamente 959 células somáticas conforman el adulto hermafrodita con un plan de cuerpo simple que todavía tiene varios tipos de tejidos distintos, incluyendo los músculos, neuronas y delgado.

Para establecer un nuevo modelo de prión en C. elegans, se optó por expresar de forma exógena la glutamina / asparagina bien caracterizado (Q / N) ricos en priones dominio NM de la proteína priónica de levadura citosólica Sup35, ya que no hay proteínas priónicas endógenos conocidos gusanos 4,40. Los priones de levadura han sido invaluables en la aclaración de los mecanismos básicos de la replicación de priones 41-44. Además, Nuevo México es el abetocitosólica proteína prión como st que se ha demostrado para recapitular el ciclo de vida completo de un prión en cultivos celulares de mamíferos 45,46. Del mismo modo, cuando se expresa en C. elegans, el dominio prión Sup35 adoptado notablemente bien a los diferentes requisitos para la propagación en células de metazoos en comparación con células de levadura y de las características clave de la biología expuestas prión agregación 40. NM se asoció con una profunda fenotipo tóxicos, incluyendo la interrupción de la integridad mitocondrial y la apariencia de diversas vesículas autofagia relacionados en el nivel celular, así como la detención embrionario y larval, retraso del desarrollo, y una alteración generalizada del medio ambiente plegamiento de la proteína en el nivel del organismo. Sorprendentemente, el dominio prion celular exhibe toxicidad celular autónoma y no autónoma, que afecta a los tejidos vecinos en la que no se expresó el transgén. Además, el transporte vesicular del dominio prión dentro de y entre las células se monitoriza en tiempo real <em> in vivo 40.

Aquí se describe cómo examinar difusión-prión como en C. elegans. Vamos a explicar cómo supervisar el transporte intra e intercelular de vesículas que contienen el dominio de priones usando microscopía de fluorescencia de lapso de tiempo. Haremos hincapié en el uso de sensores de plegado específicos de tejido y de expresión ubicua reporteros de estrés para evaluar los teléfonos celulares efectos autónomas autónomas y no sobre la aptitud celular. Por último, vamos a describir el procedimiento de una pantalla recientemente realizado genoma amplia ARN de interferencia (RNAi) para identificar nuevos modificadores de la toxicidad inducida por priones. En combinación, estos métodos pueden ayudar a desmenuzar las vías genéticas implicadas en el movimiento intercelular de proteínas y su toxicidad autónoma no celular.

Protocol

1. Seguimiento transcelular Difusión de proteínas priónicas-como por En Vivo Time-lapse de imágenes NOTA: Crecer C. elegans de tipo salvaje (WT) (N2) y las líneas transgénicas de acuerdo con métodos estándar y controlar cuidadosamente la temperatura de cultivo 47. Generar líneas transgénicas de C. elegans expresar la proteína prión como, etiquetados con la proteína fluorescente de color rojo monomérica (mRFP). Mira este video que…

Representative Results

Monitoreo intercelular propagación de proteínas priónicas como in vivo por time-lapse Transgénicos C. elegans líneas que expresan el dominio de priones son particularmente adecuados para el análisis de ciertos aspectos de proteínas priónicas-como, por ejemplo, la transmisión de célula a célula y la toxicidad no autónoma de la célula. La transparencia de los animales permite el seguimiento de fluorescencia proteínas etiquetadas desde d…

Discussion

Los métodos descritos aquí ayudan a ilustrar la difusión y la toxicidad celular autónoma la célula compleja autónomos y no de las proteínas priones similares. Recientemente hemos descubierto que un dominio citosólico prión agregación propensos se recoge en vesículas de membrana en un proceso de autofagia relacionados. Un subconjunto específico de estas vesículas transporta el dominio prión dentro de y entre las células y los tejidos 40. La clave para controlar su movimiento en el animal vivo es…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Cindy Voisine and Yoko Shibata for helpful discussion and critical comments on the manuscript. We acknowledge the High Throughput Analysis Laboratory (HTAL) and the Biological Imaging Facility (BIF) at Northwestern University for their assistance. This work was funded by grants from the National Institutes of Health (NIGMS, NIA, NINDS), the Ellison Medical Foundation, and the Daniel F. and Ada L. Rice Foundation (to R.I.M.). C.I.N.-K. was supported by the Deutsche Forschungsgemeinschaft (KR 3726/1-1).

Materials

Reagent
Nanosphere size standards 100 nm ThermoScientific 3100A
Levamisole Sigma L-9756
IPTG Sigma 15502-10G
Ahringer RNAi library Source BioScience LifeSciences  http://www.lifesciences.sourcebioscience
.com/clone-products/non-mammalian/c-elegans/c-elegans-rnai-library/
Equipment
Sorvall Legend XTR Refrigerated Centrifuge, 120VAC ThermoScientific 75004521 http://www.coleparmer.com/Product/Thermo_Scientific_Sorvall_Legend_
XTR_Refrigerated_Centrifuge_120
VAC/EW-17707-60
96 pin replicator  Scionomix   http://www.scinomix.com/all-products/96-pin-replicator/
HiGro high-capacity, incubating shaker  Digilab http://www.digilabglobal.com/higro
Multidrop Combi Reagent Dispenser  Titertrek http://groups.molbiosci.northwestern.edu/hta/titertek.htm
Biomek FX AP96 Automated Workstation  Beckman Coulter http://groups.molbiosci.northwestern.edu/hta/biomek_multi.htm
Innova44 shaker New Brunswick http://www.eppendorf.com/int///index.php?sitemap=2.3&pb=d78efbc05310ec
04&action=products&contentid=1&
catalognode=83389
M205 FA  Leica http://www.leica-microsystems.com/de/produkte/stereomikroskope-makroskope/fluoreszenz/details/product/leica-m205-fa/
ORCA-R2 C10600-10BDigital CCD camera Hamamatsu http://www.hamamatsu.com/jp/en/community/life_science_camera/product/search/C10600-10B/index.html
Spinning Disc AF Confocal Microscope  Leica http://www.leica-microsystems.com/products/light-microscopes/life-science-research/fluorescence-microscopes/details/product/leica-sd-af/
Falcon 4M60 camera  Teledyne Dalsa  http://www.teledynedalsa.com/imaging/products/cameras/area-scan/falcon/PT-41-04M60/
Software
MetaMorph Microscopy Automation & Image Analysis Software Molecular Devices http://www.moleculardevices.com/products/software/meta-imaging-series/metamorph.html
Hamamatsu SimplePCI Image Analysis Software Meyer Instruments http://meyerinst.com/imaging-software/hamamatsu/index.htm
ImageJ NIH http://rsbweb.nih.gov/ij/download.html
wrMTrck plugin for ImageJ http://www.phage.dk/plugins/wrmtrck.html
C. elegans strains
N2 (WT) Caenorhabditis Genetics Center (CGC) http://www.cgc.cbs.umn.edu/strain.php?id=10570
AM815                                                    rmIs323[myo-3p::sup35(r2e2)::rfp] Morimoto lab available from our laboratory 
See table 1 for a source for folding sensor and stress reporter strains

Riferimenti

  1. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science. 216 (4542), 136-144 (1982).
  2. Jarrett, J. T., Lansbury, P. T. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie. Cell. 73 (6), 1055-1058 (1993).
  3. Caughey, B., Kocisko, D. A., Raymond, G. J., Lansbury, P. T. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem Biol. 2 (12), 807-817 (1995).
  4. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 264 (5158), 566-569 (1994).
  5. Chien, P., Weissman, J. S., DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu Rev Biochem. 73, 617-656 (2004).
  6. Kimberlin, R. H., Walker, C. A. Pathogenesis of mouse scrapie: patterns of agent replication in different parts of the CNS following intraperitoneal infection. J R Soc Med. 75 (8), 618-624 (1982).
  7. Beekes, M., McBride, P. A., Baldauf, E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol. 79 (3), 601-607 (1998).
  8. Jucker, M., Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 501 (7465), 45-51 (2013).
  9. Aguzzi, A. Cell biology: Beyond the prion principle. Nature. 459 (7249), 924-925 (2009).
  10. Scherzinger, E., et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A. 96 (8), 4604-4609 (1999).
  11. Wood, S. J., et al. alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem. 274 (28), 19509-19512 (1999).
  12. Wang, Y. Q., et al. Relationship between prion propensity and the rates of individual molecular steps of fibril assembly. J Biol Chem. 286 (14), 12101-12107 (2011).
  13. Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D., Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci. 123 (8), 1191-1201 (2010).
  14. Tanaka, M., Collins, S. R., Toyama, B. H., Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature. 442 (7102), 585-589 (2006).
  15. Winkler, J., Tyedmers, J., Bukau, B., Mogk, A. Chaperone networks in protein disaggregation and prion propagation. J Struct Biol. 179 (2), 152-160 (2012).
  16. Ilieva, H., Polymenidou, M., Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol. 187 (6), 761-772 (2009).
  17. Nussbaum-Krammer, C. I., Morimoto, R. I. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis Model Mech. 7 (1), 31-39 (2014).
  18. Lino, M. M., Schneider, C., Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci. 22 (12), 4825-4832 (2002).
  19. Li, J. Y., et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 14 (5), 501-503 (2008).
  20. Desplats, P., et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A. 106 (31), 13010-13015 (2009).
  21. Clement, A. M., et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science. 302 (5642), 113-117 (2003).
  22. Gu, X., et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron. 46 (3), 433-444 (2005).
  23. Yamanaka, K., et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A. 105 (21), 7594-7599 (2008).
  24. Garden, G. A., et al. Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci. 22 (12), 4897-4905 (2002).
  25. Raeber, A. J., et al. Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16 (20), 6057-6065 (1997).
  26. Yazawa, I., et al. Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron. 45 (6), 847-859 (2005).
  27. Lobsiger, C. S., Cleveland, D. W. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci. 10 (11), 1355-1360 (2007).
  28. Sambataro, F., Pennuto, M. Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases. Prog Neurobiol. 97 (2), 152-172 (2012).
  29. Polymenidou, M., Cleveland, D. W. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med. 209 (5), 889-893 (2012).
  30. Brundin, P., Melki, R., Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 11 (4), 301-307 (2010).
  31. Braak, H., Braak, E., Bohl, J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 33 (6), 403-408 (1993).
  32. Meyer-Luehmann, M., et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 313 (5794), 1781-1784 (2006).
  33. Luk, K. C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338 (6109), 949-953 (2012).
  34. Clavaguera, F., et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 11 (7), 909-913 (2009).
  35. Nonaka, T., et al. Prion-like Properties of Pathological TDP-43 Aggregates from Diseased Brains. Cell Rep. 4 (1), 124-134 (2013).
  36. Lundmark, K., et al. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci U S A. 99 (10), 6979-6984 (2002).
  37. Lai, C. H., Chou, C. Y., Ch’ang, L. Y., Liu, C. S., Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10 (5), 703-713 (2000).
  38. Xu, X., Kim, S. K. The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet. 12 (11), 793-801 (2011).
  39. Boulin, T., Hobert, O. From genes to function: the C. elegans genetic toolbox. Wiley Interdiscip Rev Dev Biol. 1 (1), 114-137 (2012).
  40. Nussbaum-Krammer, C. I., Park, K. W., Li, L., Melki, R., Morimoto, R. I. Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans. PLoS Genet. 9 (3), e1003351 (2013).
  41. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi. Science. 268 (5212), 880-884 (1995).
  42. Liu, J. J., Lindquist, S. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature. 400 (6744), 573-576 (1999).
  43. Halfmann, R., et al. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature. 482 (7385), 363-368 (2012).
  44. Tyedmers, J., Madariaga, M. L., Lindquist, S. Prion switching in response to environmental stress. PLoS Biol. 6 (11), e294 (2008).
  45. Krammer, C., et al. The yeast Sup35NM domain propagates as a prion in mammalian cells. Proc Natl Acad Sci U S A. 106 (2), 462-467 (2009).
  46. Hofmann, J. P., et al. Cell-to-cell propagation of infectious cytosolic protein aggregates. Proc Natl Acad Sci U S A. 110 (15), 5951-5956 (2013).
  47. Stiernagle, T. Maintenance of C. elegans. WormBook. , (2006).
  48. Berkowitz, L. A., Knight, A. L., Caldwell, G. A., Caldwell, K. A. Generation of Stable Transgenic C. elegans Using Microinjection. J. Vis. Exp. (18), e833 (2008).
  49. Evans, T. C. Transformation and microinjection. WormBook. , (2006).
  50. Shaham, S. Methods in cell biology. Wormbooks. , (2006).
  51. Kim, E., Sun, L., Gabel, C. V., Fang-Yen, C. Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization). PLoS One. 8 (1), e53419 (2013).
  52. Fay, D. Genetic mapping and manipulation: Chapter 1-Introduction and basics. WormBook. , (2006).
  53. Kamath, R. S., Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 30 (4), 313-321 (2003).
  54. Rual, J. F., et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14 (10B), 2162-2168 (2004).
  55. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nat Methods. 2 (12), 905-909 (2005).
  56. Kern, A., Ackermann, B., Clement, A. M., Duerk, H., Behl, C. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS One. 5 (1), e8568 (2010).
  57. Becker, J., Walter, W., Yan, W., Craig, E. A. Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol. 16 (8), 4378-4386 (1996).
  58. Salvaterra, P. M., McCaman, R. E. Choline acetyltransferase and acetylcholine levels in Drosophila melanogaster: a study using two temperature-sensitive mutants. J Neurosci. 5 (4), 903-910 (1985).
  59. Goloubinoff, P., Mogk, A., Zvi, A. P., Tomoyasu, T., Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A. 96 (24), 13732-13737 (1999).
  60. Schroder, H., Langer, T., Hartl, F. U., Bukau, B. D. n. a. K. DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12 (11), 4137-4144 (1993).
  61. Rampelt, H., et al. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 31 (21), 4221-4235 (2012).
  62. Gupta, R., et al. Firefly luciferase mutants as sensors of proteome stress. Nat Methods. 8 (10), 879-884 (2011).
  63. Gidalevitz, T., Ben-Zvi, A., Ho, K. H., Brignull, H. R., Morimoto, R. I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 311 (5766), 1471-1474 (2006).
  64. Ben-Zvi, A., Miller, E. A., Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 106 (35), 14914-14919 (2009).
  65. Karady, I., et al. Using Caenorhabditis elegans as a model system to study protein homeostasis in a multicellular organism. J Vis Exp. (82), e50840 (2013).
  66. Gidalevitz, T., Krupinski, T., Garcia, S., Morimoto, R. I. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet. 5 (3), e1000399 (2009).
  67. Morley, J. F., Brignull, H. R., Weyers, J. J., Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 99 (16), 10417-10422 (2002).
  68. Brignull, H. R., Moore, F. E., Tang, S. J., Morimoto, R. I. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci. 26 (29), 7597-7606 (2006).
  69. Mohri-Shiomi, A., Garsin, D. A. Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J Biol Chem. 283 (1), 194-201 (2008).
  70. Libina, N., Berman, J. R., Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell. 115 (4), 489-502 (2003).
  71. Schatzl, H. M., et al. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol. 71 (11), 8821-8831 (1997).
  72. Keith, S. A., Amrit, F. R., Ratnappan, R., Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods. , (2014).
  73. Pierce-Shimomura, J. T., et al. Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A. 105 (52), 20982-20987 (2008).
check_url/it/52321?article_type=t

Play Video

Citazione di questo articolo
Nussbaum-Krammer, C. I., Neto, M. F., Brielmann, R. M., Pedersen, J. S., Morimoto, R. I. Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan Model Organism C. elegans. J. Vis. Exp. (95), e52321, doi:10.3791/52321 (2015).

View Video