Summary

3D-моделирование боковых желудочков и гистологического Характеристика Перивентрикулярные тканях человека и мыши

Published: May 19, 2015
doi:

Summary

Using MRI scans (human), 3D imaging software, and immunohistological analysis, we document changes to the brain’s lateral ventricles. Longitudinal 3D mapping of lateral ventricle volume changes and characterization of periventricular cellular changes that occur in the human brain due to aging or disease are then modeled in mice.

Abstract

The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.

Introduction

An эпендимные клеточный монослой линии желудочковой системы головного мозга, обеспечивающей двунаправленную барьерные и транспортные функции между спинномозговой жидкости (ликвора) и интерстициальной жидкости (ISF) 1-3. Эти функции помогают держать мозг ядовито-бесплатно и в физиологического равновесия 2,3. У людей потери частей этой подкладке из-за травмы или болезни видимому, не приводит к регенеративной замены, как и в других эпителиальных накладок; а появляется потеря эпендимных охвата клетки приведет к перивентрикулярного астроглиоза с сетчатой ​​астроцитов, охватывающих регионы лишена эпендимных клеток на поверхности желудочка. Серьезные последствия для важных CSF / обмена ИСБ и оформления механизмов можно было бы предсказать результат от потери этого эпителиального слоя 1,2,4-7.

Общей чертой человеческого старения увеличивается боковые желудочки (вентрикуломегалия) и связанный перивентрикулярная отек качестве наблюдателей,ред МРТ и жидкости-ослабленный восстановления инверсии MRI (МРТ / FLAIR) 8-14. Чтобы исследовать отношения между вентрикуломегалии и клеточной организации желудочка подкладке, посмертные последовательности человека МРТ были согласованы с гистологических препаратов бокового желудочка перивентрикулярного ткани. В случаях вентрикуломегалии существенные области глиозом заменил эпендимных покрытие клеток вдоль боковой стенки желудочка. Когда расширение желудочка не был обнаружен МРТ основе анализа объема, эпендимных клеток подкладка была цела и глиоз не был обнаружен по желудочка накладки 6. Это комбинаторный подход представляет первые комплексные документации подробно изменения в клеточной целостности бокового желудочка с помощью облицовки Wholemount препараты порциями или весь боковой стенки желудочка и 3D моделирование объемов желудочков 6. Некоторые заболевания (болезнь Альцгеймера, шизофрения) и травмы (черепно-мозговая травма)показать вентрикуломегалия как ранней нейропатологического функции. Денудации областей эпендимных клеток выстилки тем самым можно было бы предсказать мешать нормальной функции клеток эпендимных и компромисс гомеостатического баланса между CSF / ISF жидкости и растворенного обмена. Таким образом, более тщательное изучение изменений в желудочковой системе, ее клеточного состава, и следствие до основных или соседних структур головного мозга, в конечном счете начинают раскрывать больше о невропатологии, связанной с расширением желудочка.

Отсутствие мультимодальных данных изображений, и, в частности продольных последовательностей данных, вместе с ограниченным доступом к соответствующей образцы тканей гистологические делает анализ патологий головного мозга человека трудно. Моделирование фенотипы найдены в старения человека или заболевания часто может быть достигнуто с мышиных моделях и моделях животных стать одним из наших лучших средств для изучения вопросов о возбуждении заболеваний человека и прогрессии. Несколько исследований вздоровых молодых мышей описали цитоархитектуры из боковых стенок желудочка и нишу, лежащий в основе стволовых клеток 4,7-15. Эти исследования были расширены, чтобы включить 3D-моделирования и анализа сотовой стенок желудочков через 6,15 старения. Ни перивентрикулярная глиоз ни вентрикуломегалия наблюдаются у мышей в возрасте, а мыши обнаруживают относительно надежный subventicular зона (СВЗ) стволовых клеток нижележащих нишу на неповрежденной эпендимных клетки подкладка 6,15. Таким образом, бастующие видоспецифичны различия существуют как в общем обслуживание и целостности облицовки боковой желудочек в процессе старения 6,15. Поэтому, лучше всего использовать мышей, чтобы допросить условия, найденные в людях, различия между этими двумя видами необходимо охарактеризовать и соответствующим образом учитываться в любом моделирования парадигмы. Здесь мы представляем процедуры оценки продольные изменения в боковых желудочков и связанное перивентрикулярная ткани в обеих людях и мУз. Наши процедуры включают 3D-рендеринга и Волюметри обоих мыши и человека желудочков, и использование иммуногистохимического анализа вся гора препаратов перивентрикулярного ткани, чтобы охарактеризовать как сотовый организацию и структуру. Вместе эти процедуры обеспечивают средства для характеристики изменений в желудочковой системе и связанный перивентрикулярная ткани.

Protocol

ПРИМЕЧАНИЕ: Процедуры животных были одобрены Университета Коннектикута IACUC и соответствует руководящим принципам NIH. Человек ткани и анализ данных и процедуры были в соответствии с утвержденной и Университета Коннектикута IRB и соответствует руководящим принципам NIH. 1. М…

Representative Results

Контур отслеживания мыши боковых желудочков на основе иммуноокрашиванию 50 мкм корональных секций и 3D реконструкций (рис 3) позволяет получить сведения об объеме, чтобы быть собраны в различных экспериментальных парадигм, используя мышь в качестве модельной системы для болез?…

Discussion

Мы представляем инструменты и протоколы, которые могут быть использованы для оценки целостности системы желудочков мозга у мышей и человека. Эти инструменты, однако, может также применяться к другим структурам головного мозга или органов и систем, которые подвергаются изменениям в св…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

An NINDS Grant NS05033 (JCC) supported this work. The University of Connecticut RAC, SURF and OUR programs provided additional support.

Materials

Name of the Materal/Equipment Company Catalog Number Comments/Description
Phosphate buffered saline (PBS) Life Technologies 21600-069
Paraformaldehyde (PFA) Electron Microscopy Sciences 19210 Use at 4% in PBS, 4 °C
Normal Horse Serum Life Technologies 16050 10% in PBS-TX (v/v)
Normal Goat Serum Life Technologies 16210 10% in PBS-TX (v/v)
Triton X-100 (TX) Sigma-Aldrich T8787 0.1% in PBS (v/v)
Vibratome Leica VT1000S
Fluorescence Microscope Zeiss Imager.M2
Camera Hamamatsu ORCA R2
Microscope Stage Controller Ludl Electronic Products MAC 6000
Stereology software MBF Bioscience Stereo Investigator 11
Stereology software ImageJ/NIH NIH freeware
3D Reconstruction software MBF Bioscience Neurolucida Explorer
Confocal Microscope Leica TCS SP2
MRI Software
Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall Segmentation and Volume
ITK-Snap http://www.itksnap.org/pmwiki/pmwiki.php Segmentation and Volume
Multi-image Analysis GUI (Mango) http://ric.uthscsa.edu/mango/ Longitudinal overlay
Whole Mount Equipment
22.5° microsurgical straight stab knife Fisher Scientific NC9854830
parafilm
wax bottom dissecting dish 
pins
fine forceps
aquapolymount
Dissecting Microscope Leica MZ95
Whole Mount Antibodies
mouse anti-b-catenin BD Bioschiences, San Jose, CA, USA 1:250
goat anti-GFAP Santa Cruz Biotechnology 1:250
rabbit anti-AQP4 (aquaporin-4)  Sigma-Aldrich 1:400
Coronal Antibodies
Anti-S100β antibody Sigma-Aldrich 1:500
4’,6-diamidino-2-phenylindole (DAPI) Life Technologies D-1306 10 µg/mL in PBS

Riferimenti

  1. Del Bigio, M. R. Ependymal cells: biology and pathology. Acta Neuropathol. 119, 55-73 (2010).
  2. Johanson, C., et al. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol. 39, 186-212 (2011).
  3. Roales-Bujan, R., et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathologica. 124, 531-546 (2012).
  4. Cserr, H. F. Physiology of the choroid plexus. Physiol Rev. 51, 273-311 (1971).
  5. Iliff, J. J., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Science Translational Medicine. 4, 147ra111 (2012).
  6. Shook, B. A., et al. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell. , (2013).
  7. Xie, L., et al. Sleep drives metabolite clearance from the adult brain. Science. 342, 373-377 (2013).
  8. Fazekas, F., et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 43, 1683-1689 (1993).
  9. Meier-Ruge, W., Ulrich, J., Bruhlmann, M., Meier, E. Age-related white matter atrophy in the human brain. Ann N Y Acad Sci. 673, 260-269 (1992).
  10. Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., Davatzikos, C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. The Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 23, 3295-3301 (2003).
  11. Sener, R. N. Callosal changes in obstructive hydrocephalus: observations with FLAIR imaging, and diffusion MRI. Comput Med Imaging Graph. 26, 333-337 (2002).
  12. Sze, G., et al. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding. AJR Am J Roentgenol. 147, 331-337 (1986).
  13. Tisell, M., et al. Shunt surgery in patients with hydrocephalus and white matter changes. Journal of Neurosurgery. 114, 1432-1438 (2011).
  14. Valdes Hernandez Mdel, C., et al. Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques. Magn Reson Imaging. 30, 222-229 (2012).
  15. Shook, B. A., Manz, D. H., Peters, J. J., Kang, S., Conover, J. C. Spatiotemporal changes to the subventricular zone stem cell pool through aging. The Journal of Neuroscience : The Official Journal Of The Society For Neuroscience. 32, 6947-6956 (2012).
  16. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 3, 265-278 (2008).
  17. Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H., Alvarez-Buylla, A. The subventricular zone en-face: wholemount staining and ependymal flow. J Vis Exp. , (2010).
  18. Luo, J., Daniels, S. B., Lennington, J. B., Notti, R. Q., Conover, J. C. The aging neurogenic subventricular zone. Aging Cell. 5, 139-152 (2006).
  19. Luo, J., Shook, B. A., Daniels, S. B., Conover, J. C. Subventricular zone-mediated ependyma repair in the adult mammalian brain. J Neurosci. 28, 3804-3813 (2008).
  20. Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., Buckner, R. L. Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cogn Neurosci. 22, 2677-2684 (2010).
  21. Giorgio, A., De Stefano, N. Clinical use of brain volumetry. J Magn Reson Imaging. 37, 1-14 (2013).
  22. Caspers, S., et al. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS. Front Aging Neurosci. 6, 149 (2014).
  23. Keuken, M. C., et al. Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33, 4896-4900 (2013).
  24. Marti-Bonmati, L., Sopena, R., Bartumeus, P., Sopena, P. Multimodality imaging techniques. Contrast Media Mol Imaging. 5, 180-189 (2010).
  25. Bergmann, O., et al. The age of olfactory bulb neurons in humans. Neuron. 74, 634-639 (2012).
  26. Sanai, N., et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 478, 382-386 (2011).
  27. Wang, C., et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 21, 1534-1550 (2011).
  28. Carmen Gomez-Roldan, D. e. l., M, , et al. Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. The Journal of Comparative Neurology. 507, 1571-1587 (2008).
check_url/it/52328?article_type=t

Play Video

Citazione di questo articolo
Acabchuk, R. L., Sun, Y., Wolferz, Jr., R., Eastman, M. B., Lennington, J. B., Shook, B. A., Wu, Q., Conover, J. C. 3D Modeling of the Lateral Ventricles and Histological Characterization of Periventricular Tissue in Humans and Mouse. J. Vis. Exp. (99), e52328, doi:10.3791/52328 (2015).

View Video