Summary

外科手术切除为鼠标肋骨:模型进行大规模的长骨修复

Published: January 21, 2015
doi:

Summary

The overall goal of this procedure is to successfully resect a portion of bone from the rib of a mouse. The procedure was developed as a model to study large-scale long bone repair.

Abstract

该协议研究人员介绍,为大规模的骨修复利用鼠标肋骨的新模式。该过程详细描述了以下内容:准备动物进行手术的,打开胸体壁,从周围肋间肌曝光所需的肋,切除肋的所需部分,而不诱导气胸,并关闭所述切口。相较于四肢骨骼的骨头,肋骨都非常方便。此外,没有任何的内部或外部固定器是必要的,因为在相邻的肋提供自然的固定。手术采用市售的用品,很简单易学,且耐受性良好的动物。该过程可以进行具有或不具有除去周围骨膜,因此骨膜修复的贡献可以被评估。结果表明,如果被保留的骨膜,鲁棒修复发生在1 – 2个月。我们希望利用这个协议会鼓励研究到肋骨修复,而结果将有利于新的方式来刺激骨修复等身体周围地区的发展。

Introduction

衰弱的骨骼损伤,慢性骨关节炎,以及与重建手术相关的严重问题影响经济生产力,家庭幸福,和生活质量。而小断裂和损伤可以治愈还算不错,人类是不能修复大的缺陷,因此必须依靠重建手术,恢复的结构和功能。重建可能涉及同种异体或heterogeneic移植,骨morcellized,植入支架,或牵张成骨。不幸的是,不仅有与这些处理,但在修复骨骼的原始强度是很少获得持久性相关的发病率的因素。因此,需要新的临床方法。

单向开发创新的方法来治疗节段性缺损的研究中,大型维修时,自然的情况。著名的两栖动物可以再生骨骼元素,而哺乳动物被认为是有限的日是能力。然而,由于20 世纪初期,再生在人肋几个报告已经发表表明人类可能不被如此限制1-4。目前这种现象,最好由整形外科医生谁使用肋材料颚,脸和耳重建已知的,但它不是更广泛地理解5。为了研究这种修复中更详细地说,我们已经开发出使用鼠标的外科模型。使用该协议,研究人员可以识别所涉及的先天因素,并使用该信息,以便在其它地点的骨骼的愈合。

有许多优势,使用肋骨作为模型来研究骨骼修复。首先,将周围的肋提供自然固定器(相对于切除股骨6,7)。这降低了内部和外部固定器的发病风险并简化了外科手术。胸部西澳其次,薄肌层会提供易于访问和良好的能见度使得检测媲美颅骨切除8的便利。第三,在对比其通过膜内骨化,由软骨内骨化肋形式形成,并通过延伸在位于中央骨干的任一端生长板生长长度的颅骨。因此,修复肋可能更媲美修复长骨的阑尾骨架组成。此外,我们已经发现,相对于股骨,肋的骨膜较厚,可以更容易地操纵。因此,调查谁愿意测定骨修复的研究骨膜或测试细胞疗法,药物制剂,和/或组织支架的目的,可能会发现这种手术模式非常有用。总之,这个肋切除模型提供在其内来研究天然大型骨修复哺乳动物中一般使用没有这样的模型当前存在的上下文。

Protocol

注:所有的程序都是按照批准的机构动物护理和使用委员会(IACUC)在南加州大学的动物协议。 1.准备手术奠定了必要的外科手术工具和用品(消毒,项目1 – 18 材料清单),并安排一个解剖显微镜和光纤反式照明在引擎盖上或下沉气流表格。 将一个性成熟的小鼠(20 – 30克,1 – 3个月)的感应室4%异氟醚诱导麻醉。 确认麻醉用爪子和/或尾?…

Representative Results

动物通常此过程中快速恢复,切口愈合良好,动物表现出正常的行为。该过程使用市售的用品和实践后,可在1小时内完成的。使用此过程来产生的实验数据前,有必要分析切除在第0天时间点,以确定是否有任何大的骨碎片可能会保留在切除区域内是重要的。评估适当的程序的一种方法是,以评估动物用X射线或显微成像术后,尽管这通常需要特别的辐射的安全认证。相反,另一种简单的评估可以?…

Discussion

当第一次学习此协议,确定在哪里可以找到最初的切口可以是具有挑战性。然而,在小鼠安乐死的做法可以帮助外科医生学会在哪里放置初始切口,暴露所需的肋骨被切除。工作在尸体也提高到具有或不具有骨膜除去肋部分所需的精细运动技能。此外,新的人到该过程可能会发现操纵细的工具和薄缝线是困难的。而打结,多余的拉动缝线可以撕裂组织。因此,一些实践缝合也对尸体可能是有帮助?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank members of the Mariani lab for critical reading of the manuscript. Our funding sources were: the Baxter Medical Scholar Research Fellowship (to M.K.S.), USC undergraduate fellowships and the Provost, Dean Joan M. Schaeffer, and Rose Hills Fellowships, (to M.K.S.). We also acknowledge a CIRM BRIDGES fellowship through Pasadena City College (to T.T.T). and the James H. Zumberge Research and Innovation Fund, the USC Regenerative Medicine Initiative, and the NIAMS NIH under Award Number R21AR064462 (to F.V.M).

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
Medium sized micro-dissection scissors (Vannas-Tübingen Spring Scissors 5 mm) Fine Science Tools 15003-08
Fine micro-dissection scissors (Vannas Spring Scissors – 2mm Cutting Edge) Fine Science Tools 15000-04 curved tip is beneficial
Micro-scalpel 5.0 mm Fine Science Tools 10315-12 other fine scalpels can be substituted
Dumont 55 forceps Fine Science Tools 11295-51
Retractor  Fine Science Tools 17004-05 adjustability is convenient
Micro-needle holders Fine Science Tools 12060-01
9.0 nylon sutures (Ethilon), taper point best Ethicon 2819G or similar taper point best but reverse cutting is also good
7.0 prolene sutures (Prolene) Ethicon 8700H or similar 6-0 can be used too, needle point can vary
Large forceps (Adson Forceps) Fine Science Tools 11006-12 other brands are fine
Lubricant Eye Ointment (Akwa Tears) Akorn 17478-062-35
Suture glue (GLUture Topical Tissue Adhesive) Abbot 32046-01 has excellent working time
Shaver Wahl 9918-6171 or similar
Clamp lamp Zoo Med LF-5
Infrared Bulb, 75W Zoo Med RS-75
RC2 Rodent Anesthesia System VetEquip  922100
IsoFlo (Isoflurane) Abbot 05260-05
Buprenorphine (Buprenex) Reckitt Benckiser 12496-0757-1
Betadine Purdue Frederick 67618015017
Flavored Gelatin, raspberry Jell-O B000E1FYL0 made up firm, to the consistency of 'jigglers'

Riferimenti

  1. Philip, S. J., Kumar, R. J., Menon, K. V. Morphological study of rib regeneration following costectomy in adolescent idiopathic scoliosis. Eur Spine J. 14 (8), 772-776 (2005).
  2. Munro, I. R., Guyuron, B. Split-rib cranioplasty. Ann Plast Surg. 7 (5), 341-346 (1981).
  3. Taggard, D. A., Menezes, A. H. Successful use of rib grafts for cranioplasty in children. Pediatric neurosurgery. 34 (3), 149-155 (2001).
  4. Head, J. R. Prevention of Regeneration fo the Ribs: A problem in thoracic surgery. Archives of Surgery. 14 (6), 1215-1221 (1927).
  5. Kawanabe, Y., Nagata, S. A new method of costal cartilage harvest for total auricular reconstruction: part I. Avoidance and prevention of intraoperative and postoperative complications and problems. Plastic and reconstructive surgery. 117 (6), 2011-2018 (2006).
  6. Cheung, K. M., et al. An externally fixed femoral fracture model for mice. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 21 (4), 685-690 (2003).
  7. Matthys, R., Perren, S. M. Internal fixator for use in the mouse. Injury. 40, S103-S109 (2009).
  8. Cooper, G. M., et al. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plastic and reconstructive surgery. 125 (6), 1685-1692 (2010).
  9. . Ask the Vet. JAX NOTES. 499, (2005).
  10. Flecknell, P. A., Roughan, J. V., Stewart, R. Use of oral buprenorphine (‘buprenorphine jello’) for postoperative analgesia in rats–a clinical trial. Laboratory animals. 33 (2), 169-174 (1999).
  11. Rigueur, D., Lyons, K. M. Whole-mount skeletal staining. Methods in molecular biology. 1130, 113-121 (2014).
  12. Evans, D. J. Contribution of somitic cells to the avian ribs. Developmental biology. 256 (1), 114-126 (2003).
  13. Colnot, C., Thompson, Z., Miclau, T., Werb, Z., Helms, J. A. Altered fracture repair in the absence of MMP9. Development. 130 (17), 4123-4133 (2003).
  14. Lu, C., et al. Cellular basis for age-related changes in fracture repair. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 23 (6), 1300-1307 (2005).
  15. Zilberman, Y., Gafni, Y., Pelled, G., Gazit, Z., Gazit, D. Bioluminescent imaging in bone. Methods in molecular biology. 455, 261-272 (2008).
  16. Pelled, G., Gazit, D. Imaging using osteocalcin-luciferase. Journal of musculoskeletal. 4 (4), 362-363 (2004).
  17. Elefteriou, F., Yang, X. Genetic mouse models for bone studies–strengths and limitations. Bone. 49 (6), 1242-1254 (2011).
  18. Srour, M. K., et al. Natural large-scale regeneration of rib cartilage in a mouse. J. Bone Miner. , (2014).
check_url/it/52375?article_type=t

Play Video

Citazione di questo articolo
Tripuraneni, N., Srour, M. K., Funnell, J. W., Thein, T. Z. T., Mariani, F. V. A Surgical Procedure for Resecting the Mouse Rib: A Model for Large-Scale Long Bone Repair. J. Vis. Exp. (95), e52375, doi:10.3791/52375 (2015).

View Video