Summary

通过光学吸收跃迁图案 - 制备与表征

Published: December 11, 2014
doi:

Summary

We report that the diffraction limit of conventional optical lithography can be overcome by exploiting the transitions of organic photochromic derivatives induced by their photoisomerization at low light intensities.1-3 This paper outlines our fabrication technique and two locking mechanisms, namely: dissolution of one photoisomer and electrochemical oxidation.

Abstract

This protocol describes the fabrication and characterization of nanostructures using a novel nanolithographic technique called Patterning via Optical Saturable Transitions (POST). In this technique the chemical properties of organic photochromic molecules that undergo single-photon reactions are exploited, enabling rapid top-down nanopatterning over large areas at low light intensities, thereby, allowing for the circumvention of the far-field diffraction barrier.4 Simple, cost-effective, high throughput and resolution alternatives to nanopatterning are being explored, such as, two-photon polymerization5,6, beam pen lithography (BPL)7, scanning electron beam lithography (SEBL), and focused ion beam (FIB) patterning. However, multi-photon approaches require high light intensities, which limit their potential for high throughput and offer low image contrast. Although, electron and ion beam lithographic processes offer increased resolution, the serial nature of the process is limited to slow writing speeds, which also prevents patterning of features over large areas. Beam-pen lithography is an approach towards parallel near-field optical lithography. However, the gap between the source of the beam and the surface of the photoresist needs to be controlled extremely precisely for good pattern uniformity and this is very challenging to accomplish for large arrays of beams. Patterning via Optical Saturable Transitions (POST) is an alternative optical nanopatterning technique for patterning sub-wavelength features1-3. Since this technique uses single photons instead of electrons, it is extremely fast and does not require high light intensities1-3, opening the door to massive parallelization.

Introduction

光学光刻是具有关键的重要性在纳米级的结构和设备的制造。在新的光刻技术的进步提高了能力,使新的一代新型设备8-11在这篇文章中,回顾,提出一类是取得使用新型的光开关分子深亚波长光学分辨率的光刻技术。这种方法被称为经光学-饱和转换(POST)图案。1-3

POST是独特地结合的饱和光致变色分子的光转换,具体地(1,2-双(5,5'-二甲基-2,2'- bithiophen基))的想法一新颖的纳米加工技术perfluorocyclopent -1-烯。通俗地,该化合物被称为BTE, 图1中 ,例如在受激发射损耗(STED)显微镜12使用时,与干涉光刻,这使得它的强大工具LARG深亚波长特征的e-区域并行纳米图案上的各种潜在扩展表面的至2-和3-维。

光致变色层最初是在一个均匀的状态。当该层暴露于λ1的均匀的照明,将其转换成所述第二异构态(1c)中图2,然后将样品在λ2,其中样品进入所述第一异构态(转换暴露于聚焦节点1O)无处不在,除了在节点的酒店附近。通过控制曝光剂量,未转化的区域的尺寸可以被任意小。异构体中的一个的后续定影步骤可以选择性地和不可逆变换(锁定)到第三状态(黑色)以锁定模式。接着,对层被均匀地暴露于λ1,它转换以外的所有锁定区域恢复到原来的状态。该的步骤顺序可以重复与相对于光学样品的位移,导致2锁定区域的间隔比所述远场衍射极限小。因此,任意的几何形状可被图案化在一个“点阵”时尚1-3

Protocol

注:执行下洁净室100级条件或更好以下所有步骤。 1.样品制备清理“直径2硅片缓冲氧化物刻蚀(BOE)解决方案(6部分40%NH 4 F和1份49%HF)2分钟( 注意:危险化学品 )。选择这种蚀刻时间以除去任何有机物或污染物的表面上。冲洗以去离子(DI)水中约5分钟。干燥晶片用干燥的N 2。 注意:不要使用HF时单独工作。总是戴着眼睛的保护,以防泄漏防?…

Representative Results

制作样品: 不同的氧化时间被表征为在0.85 V的循环伏安法测定的氧化电压在图3所示的原子力显微镜照片。的50纳米厚的薄膜暴露于0.95毫瓦/ cm 2的功率密度的驻波在周期为400nmλ= 647毫微米为60秒。作为氧化时间从10分钟增加到25分钟,可以清楚地看到的对比度的损失,因为一些由1O的地区得到氧化为好。显影剂(5(重量%)的异丙?…

Discussion

The fabrication, experimental setup and related operational procedures of Patterning via Optical Saturable Transitions (POST) have been described. By exploiting the linear switching properties of thermally stable photochromic molecules, POST offers new perspectives on circumventing the far-field diffraction limit.1-2,4

Previously long-term storage requirement of the samples was solved by storing the samples under N2, directly after the initial evaporation.2 How…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Thanks to Michael Knutson, Paul Hamric, Greg Scott, and Chris Landes for helpful discussions and assistance related to the custom inert atmosphere sample holder and assistance in the University of Utah student machine shop. P.C. acknowledges the NSF GRFP under Grant No. 0750758. P.C. acknowledges the University of Utah Nanotechnology Training Fellowship. R.M. acknowledges a NSF CAREER Award No. 1054899 and funding from the USTAR Initiative.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Isopropanol Fisher Scientific P/7500/15 CAUTION: flammable, use good
ventilation and avoid all ignition
sources.
Buffered Oxide Etch
Methanol Ricca Chemical 48-293-2  CAUTION: flammable, use good
ventilation and avoid all ignition
sources.
Ethylene Glycol Sigma-Aldrich 324558 CAUTION: Harmful if swallowed
Silicon wafer
Diamond Scribe
Glass Beakers
Tweezers Ted Pella 5226
Reactive Ion Etching System Oxford Plasma Lab 80 Plus
Inert Atmosphere Sample Holder Proprietary In-house Designed
Polarizing beamsplitter cube Thorlabs PBS052
HeNe Laser Melles Griot 25-LHP-171 CAUTION: Wear safety glasses
Half-wave plates Thorlabs WPH05M-633
Thermal Evaporator Proprietary In-house Designed
TMV Super TM Vacuum Products TMV Super
Voltammograph Bioanalytical Systems CV-37
Shortwave UV lamp 365nm UVP Analytik Jena Company UVGL-25 CAUTION: Wear UV safety glasses

Riferimenti

  1. Brimhall, N., Andrew, T. L., Manthena, R. V., Menon, R. Breaking the far-field diffraction limit in optical nanopatterning via repeated photochemical and electrochemical transitions in photochromic molecules. Physical Review Letters. 107 (20), 205501 (2011).
  2. Cantu, P., et al. Subwavelength nanopatterning of photochromic diaryethene films. Applied Physics Letters. 100 (18), 183103 (2012).
  3. Cantu, P., Andrew, T. L., Menon, R. Nanopatterning of diarylethene films via selective dissolution of one photoisomer. Applied Physics Letters. 103 (17), 173112 (2013).
  4. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie. 9 (1), 413-418 (1873).
  5. Li, L., et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science. 324 (5929), 910-913 (2009).
  6. Fischer, J., von Freymann, G., Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Advanced Materials. 22 (32), 3578-3582 (2010).
  7. Mirkin, C. A., et al. Beam pen lithography. Nature Nanotechnology. 5, 637-640 (2010).
  8. Xie, X., et al. Manipulating spatial light fields for micro- and nano-photonics. Physica E: Low-dimensional Systems and Nanostructures. 44, 1109-1126 (2012).
  9. Leroy, J., et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Applied Physics Letters. 100 (21), 213507 (2012).
  10. Carr, D., Sekaric, L., Craighead, H. Measurement of nanomechanical resonant structures in single-crystal silicon. Journal of Vacuum Science & Technology B. 16 (6), 3821-3824 (1998).
  11. Wilhelmi, O., et al. Rapid prototyping of nanostructured materials with a focused ion beam. Japanese Journal of Applied Physics. 47 (6), 2010-5014 (2008).
  12. Hell, S. W. Far-field optical nanoscopy. Science. 316 (5828), 1153-1158 (2007).
  13. Chou, S. Y., Krauss, P. R., Renstrom, P. J. Nanoimprint lithography. Journal of Vacuum Science & Technology B. 14, 4129 (1996).
  14. Guillemette, M. D., et al. Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integrative Biology. 1 (2), 196-204 (2009).
check_url/it/52449?article_type=t&slug=patterning-via-optical-saturable-transitions-fabrication

Play Video

Citazione di questo articolo
Cantu, P., Andrew, T. L., Menon, R. Patterning via Optical Saturable Transitions – Fabrication and Characterization. J. Vis. Exp. (94), e52449, doi:10.3791/52449 (2014).

View Video