Summary

エフェクターCD4の養子移入によるマウス腸の炎症の誘導<sup> +</sup> CD45RB<sup>高い</sup>免疫不全マウスへのT細胞

Published: April 21, 2015
doi:

Summary

Here, we present a protocol to induce colonic inflammation in mice by adoptive transfer of syngeneic CD4+CD45RBhigh T cells into T and B cell deficient recipients. Clinical and histopathological features mimic human inflammatory bowel diseases. This method allows the study of the initiation of colonic inflammation and progression of disease.

Abstract

ヒト炎症性腸疾患(IBD)、それぞれに長所と短所の病因を研究するために利用可能な多くの異なる動物モデルがある。ここではTおよびB細胞欠損レシピエントマウスに同系の脾臓CD4 + CD45RB high T細胞の養子移入によって開始される実験的大腸炎モデルを記述する。主にナイーブ、エフェクター細胞からなるCD4 + CD45RB T細胞集団は、密接に、ヒトIBDの重要な側面に似た、慢性的腸炎を誘導することができる。この方法は、疾患の発症および進行の側面を研究するために操作することができる。さらに、それは腸の炎症、すなわち 、先天性、適応性の機能、及び調節免疫細胞集団、および環境曝露の役割は微生物を研究するために使用することができる。この記事では、ステップバイステップのプロトコルで大腸炎を誘発するための方法論を示している。このINCludes成功裏に研究目的のために実験的大腸炎のこのマウスモデルを開発するために必要なキー技術的な側面のデモビデオ。

Introduction

The inflammatory bowel diseases (IBD) Crohn’s disease and ulcerative colitis result from an incompletely defined and complex interaction between host immune responses, genetic susceptibility, environmental factors, and the enteric luminal contents1. Recent genome-wide association studies report associations between immune cell regulatory genes and IBD susceptibility2,3. Both innate and adaptive immune cell intrinsic genes are represented in these studies, indicating a central role for these cell populations in IBD pathogenesis.

There currently exist more than 50 animal models of human IBD. While no one model perfectly phenocopies human IBD, many are useful for studying various aspects of human disease, including disease onset and progression and the wound-healing response. In the method described here, intestinal inflammation is initiated with syngeneic splenic CD4+CD45RBhigh T cell adoptive transfer into T and B cell deficient recipient mice4. The CD4+CD45RBhigh T cell population contains mainly naïve T cells primed for activation that are capable of inducing chronic small bowel and colonic inflammation. This method allows the researcher to modify key experimental variables, including both innate and adaptive immune cell populations, to answer biologically relevant questions relating to disease pathogenesis. Additionally, this method provides precise initiation of disease onset and a well-characterized experimental time course. This permits the kinetic study of clinical features of disease progression in mice. Intestinal inflammation induced by this method shares many features with human IBD, including chronic large and small bowel transmural inflammation, pathogenesis driven by cytokines such as TNF and IL-12, and systemic symptoms such as wasting5. Thus, it is an ideal model system for studying the pathogenesis of human IBD.

The method here describes in detail the protocol for inducing experimental colitis by adoptive transfer of CD4+CD45RBhigh T cells into Rag1-/- mice. We discuss key technical steps, expected results, optimization, and trouble-shooting. We address the required elements for the successful development of this murine model of intestinal inflammation for research purposes.

Protocol

注:すべての動物のプロトコルはによっておよび施設内動物管理使用委員会(IACUC)規制や実験動物の管理と使用に関する米国学術研究会議·ガイドに準拠して承認されていることを確認します。ドナーマウスは、男性または女性のいずれでもよいが、レシピエントマウスは、雄であるべきである。女性の受信者が使用する場合、ドナーマウスは、雌5でなければならない…

Representative Results

約成体C57BL / 6ドナーマウスから脾臓を10から10×10 6個のCD4 + CD45RB high T細胞を確実に分離されている。この数は、年齢や歪みドナーマウスの研究者の習熟度に応じて変化するであろう。 – / – 4×10 5 C57BL / 6 CD4 + CD45RB high T細胞をC57BL / 6 RAG1に転送されたとき、レシピエントマウスマウスは、より重篤な疾患に遺伝的に感受性である場?…

Discussion

ここでは、免疫不全マウスにCD4 + CD45RB + T細胞の養子移入によってマウスでの大腸の炎症を誘導するステップバイステップのプロトコルを記述します。 – / –レシピエントマウス、他の系統であるが( 例えば 、BALB / C、129S6 / SvEv、非肥満糖尿病(NOD))及び免疫不全の遺伝的モデル( 例えば 、SCID、 が、Rag2我々はC57BL / 6ドナー脾臓と同系RAG1を</em…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品はアメリカの消化器協会(AGA)研究学者賞とクローン病とアメリカの大腸炎財団(SZSへ)(CCFA)キャリア開発賞、(ECS)は、NIH NIDDK F30 DK089692、胃腸生物学ノースカロライナ大学のセンターによってサポートされていましたと疾病グラントのP30のDK34987(組織学コア)。 UNCフローサイトメトリーコアファシリティは、UNCラインバーガー総合がんセンターのNCIセンターコアサポートグラント(P30CA016086)によって部分的にサポートされています。私たちは、病理組織学的分析および免疫組織化学との彼の助けを獣医のノースカロライナ州立大学からルークB.ボーストに感謝。

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
10x PBS Gibco 14200075
12x75mm round-bottom tube Falcon 352052
15 ml conical Corning 430790
26g x 3/8 Needle BD Biosciences 305110
50 ml conical Corning 430828
70 um Cell Strainer Fisherbrand 22363548
BD IMagnet BD Biosciences 552311
β-mercaptoethanol Thermo Scientific 35602
CD4-FITC IgG2b eBioscience 11-0041
CD45RB-PE IgG2a BD Pharminogen 553101
Complete Media RPMI-1640, 1% Pen/Strep, 10% FBS, 0.0004% β-ME
FACS tube + strainer BD Falcon 352235
Glass Microscope Slides Fisherbrand 12550A3
Heat-inactivated FBS Gemini 100-106
Labeling Buffer 1x PBS, 0.5% BSA, 2 mM EDTA
Lysis Buffer 0.08% NH4Cl, 0.1% KHCO3, 1 mM EDTA
MoFlo XDP Beckman Coulter
Mouse CD4 T lymphocyte Enrichment Set – DM BD Biosciences 558131
Mouse IgG2a-PE BD Pharminogen 553457
Mouse IgG2b-FITC eBioscience 11-4732
Pasteur pipet Fisherbrand 13-678-20D
Penicillin-Streptomycin Solution, 100X Corning Cellgro 30-002-CI
Petri Dish Fisherbrand 875713
Pure Ethanol 200 Proof Decon Labs 2705-HC
RPMI-1640 Gibco 11-875-093
Syringe BD Biosciences 309597
Trypan blue Corning Cellgro 25-900-CI
Wash Media RPMI-1640, 1% Pen/Strep, 0.0004% β-ME

References

  1. Xavier, R. J., Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 448 (7152), 427-434 (2007).
  2. Cho, J. H., Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 140 (6), 1704-1712 (2011).
  3. Jostins, L., et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 491 (7422), 119-124 (2012).
  4. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B., Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 5 (11), 1461-1471 (1993).
  5. Ostanin, D. V., et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol. 296 (2), 135-146 (2009).
  6. Ma, B. W., et al. Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PLoS One. 7 (10), e47416 (2012).
  7. Read, S., Powrie, F. Induction of inflammatory bowel disease in immunodeficient mice by depletion of regulatory T cells. Curr Protoc Immunol. Chapter 15 (Unit 15 13), (1999).
  8. Maillard, M. H., et al. The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med. 204 (2), 381-391 (2007).
  9. Hegazi, R. A., et al. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway. J Exp Med. 202 (12), 1703-1713 (2005).
  10. Kole, A., et al. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J Immunol. 191 (5), 2771-2779 (2013).
  11. Kobayashi, T., et al. NFIL3-deficient mice develop microbiota-dependent, IL-12/23-driven spontaneous colitis. J Immunol. 192 (4), 1918-1927 (2014).
  12. Steinbach, E. C., et al. Innate PI3K p110delta Regulates Th1/Th17 Development and Microbiota-Dependent Colitis. J Immunol. 192 (8), 3958-3968 (2014).
  13. Kobayashi, T., et al. NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. J Immunol. 186 (8), 4649-4655 (2011).
  14. Leach, M. W., Bean, A. G., Mauze, S., Coffman, R. L., Powrie, F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T cells. Am J Pathol. 148 (5), 1503-1515 (1996).
  15. Powrie, F., et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4. T cells. Immunity. 1 (7), 553-562 (1994).
  16. Read, S., Malmstrom, V., Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 192 (2), 295-302 (2000).
  17. Rogers, G. B., et al. Functional divergence in gastrointestinal microbiota in physically-separated genetically identical mice. Sci Rep. 4, 5437 (2014).
  18. Fukata, M., et al. The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J Immunol. 180 (3), 1886-1894 (2008).
  19. Kurtz, C. C., et al. Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells. Am J Physiol Gastrointest Liver Physiol. 307 (3), 338-346 (2014).
  20. Naganuma, M., et al. Cutting edge: Critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol. 177 (5), 2765-2769 (2006).
  21. Ranatunga, D. C., et al. A protective role for human IL-10-expressing CD4+ T cells in colitis. J Immunol. 189 (3), 1243-1252 (2012).
  22. Srikrishna, G., et al. Carboxylated glycans mediate colitis through activation of NF-kappa. B. J Immunol. 175 (8), 5412-5422 (2005).
  23. Wang, F., et al. IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology. 131 (4), 1153-1163 (2006).
check_url/52533?article_type=t

Play Video

Cite This Article
Steinbach, E. C., Gipson, G. R., Sheikh, S. Z. Induction of Murine Intestinal Inflammation by Adoptive Transfer of Effector CD4+CD45RBhigh T Cells into Immunodeficient Mice. J. Vis. Exp. (98), e52533, doi:10.3791/52533 (2015).

View Video