Summary

小鼠海马组织的前子宫内电和器官切片文化

Published: March 04, 2015
doi:

Summary

Here we present a protocol providing a tool to examine regulatory mechanisms of specific genes during hippocampal development. Employing ex utero electroporation and organotypic slice culture allows the up- and down-regulation of the expression of genes of interest in single cells and follow their fate during development.

Abstract

Mouse genetics offers a powerful tool determining the role of specific genes during development. Analyzing the resulting phenotypes by immunohistochemical and molecular methods provides information of potential target genes and signaling pathways. To further elucidate specific regulatory mechanisms requires a system allowing the manipulation of only a small number of cells of a specific tissue by either overexpression, ablation or re-introduction of specific genes and follow their fate during development. To achieve this ex utero electroporation of hippocampal structures, especially the dentate gyrus, followed by organotypic slice culture provides such a tool. Using this system to generate mosaic deletions allows determining whether the gene of interest regulates cell-autonomously developmental processes like progenitor cell proliferation or neuronal differentiation. Furthermore it facilitates the rescue of phenotypes by re-introducing the deleted gene or its target genes. In contrast to in utero electroporation the ex utero approach improves the rate of successfully targeting deeper layers of the brain like the dentate gyrus. Overall ex utero electroporation and organotypic slice culture provide a potent tool to study regulatory mechanisms in a semi-native environment mirroring endogenous conditions.

Introduction

海马起着记忆和学习中起重要作用,以及情感行为。其中一个主要功能包括整合的短期记忆转化为长期记忆,这需要神经系统的可塑性高的。海马的齿状回充当用于输入信息的主网关,也是两个脑区与正在进行的神经发生1整个成年期1,2。海马结构的发育过程中胚胎发育后期,尤其在最初3〜4周,产后3时。在齿状的早期发展回中需要设一个干细胞库是用于产后以及成年神经4。显影神经元产后以及成年神经发生过程中通过各种阶段,从干细胞通过祖细胞向未成熟和最后的成熟神经元的几个阶段。在神经发生中的表达的不同阶段特定的基因是必需的,以允许成熟和集成新的神经元的进海马电路5,6。

用小鼠遗传学和免疫表型分析,以及允许定义许多这些基因的表达模式和功能分子方法。在另外的微阵列分析,以及染色质免疫沉淀(ChIP)提供关于潜在的直接和间接的靶基因7,8-信息。然而,仍然有关于海马发育的调控机制许多悬而未决的问题,在齿状回尤其是发展。通过向下或向上调节的兴趣和/或它的靶基因和发育过程中按照它们的命运的基因的进一步了解如何特定基因调节的系统是必需的,允许小数量的单元的操作, 在子宫内电的shRNA,利息或Cre重组酶毒素重组基因的cDNA的本身提供了这样一种工具。以确保所希望的DNA或小RNA表达质粒应当用于电穿孔的存在。这种做法是非常成功实施的研究皮质发育9,10,但它是一个更具挑战性的方法检查齿状回中的发展,由于海马结构的更深层次的脑的位置。

前子宫内电后器官切片文化是一种方法来解决这个问题11,12。与此相反,以在子宫内电不是整个胚胎但只有头部被用于允许因此放置电极以更有利的方式直接向海马和齿状回shRNA的/ DNA。我们的团队成功地采用前子宫内电齿状回中的发展过程中8,研究转录因子BCL11B的作用。 BCL11B在齿状回中的发展为r的双重角色egulating祖细胞的增殖和分化的证明了免疫组化。进一步定义了一种机制,BCL11B参与这些过程中,Polleux组11,12的协议进行了调整,以研究在协议部分下面描述的齿状回。在第一种方法的问题是解决BCL11B是否自主调节神经细胞分化的细胞。第二种方法检查桥粒,BCL11B的直接靶基因是否足以拯救BCL11B表型。

Protocol

注:所有的动物进行了实验,按照德国法律,并批准了在图宾根的政府部门。 1.准备微量移液器,解决方案和膜的微量移液器的制备使用微量拉马与以下程序拉玻璃微:热量:540,拉:125,速度:20和延迟:140针长度达5.5公分。 使用microgrinder斜角针来获得4mm的合适的喷嘴尺寸。保存在盒子或15厘米培养皿针,以防止损坏的提示。 溶液的制备<…

Representative Results

转录因子BCL11B消融导致的祖细胞增殖并导致降低的齿状回的大小和细胞数目的神经元分化的损害。此外突变的神经元无法融入海马电路引起的学习记忆障碍8。要回答有关BCL11B在这些过程中的前子宫内电被采用的监管机制(S)的问题。 解决这个问题是否BCL11B细胞自主调节神经细胞分化,分 ​​别由GFP-Cre重组酶结构或单独GFP 11的前子宫内电…

Discussion

海马在学习和记忆的重要功能。齿状回也是在那里发生神经不仅在发展,而且在整个成年期2脑区之一。产后和成人海马神经发生的收益在涉及许多共同的因素类似的方式。限定这些因素的调节机制将在理解神经变性疾病这又会导致新的治疗和预防措施非常有益的。要获得此信息的一个需要一个系统来操纵单个细胞,并就证明了前子宫内电后器官切片文化观察他们在家乡的环境。

<p class="…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft to SB (BR-2215; SFB 497/A9).

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/ Description
Flaming/ Brown Micropipette Puller Sutter Instruments Company (USA) P-97
Fine Glass Pipettes Warner Instruments G100F-4
Microgrinder Narishige, Japan EG-44
Anesthetic Bracket unit Harvard Apparatus PY2 34-0412
Halovet Vaporizer Harvard Apparatus PY2 34-0398
Fluovac System Harvard Apparatus PY2 34-0387
IMS Fluosorber Harvard Apparatus PY2 34-0415
Anesthetizing Chamber Harvard Apparatus PY2 34-0460
Electroporator BEX Company CUY21 EDIT
Tweezers with disk electrodes BEX Company LF650P3 3 mm electrodes for E15.5
Tweezers with disk electrodes BEX Company LF650P5 5 mm electrodes for E18.5
Picospritzer III Parker Hannifin Corporation P/N 052-0500-900
HM 650V Vibrating Blade Microtome, 230V Thermo Scientific 920120
Dissection Microscope Carl Zeiss Microscopy Gmbh Stemi SV8
Inverted Microscope Leica Leica DM IL LED
Confocal Microscope Leica Sp5II
6 well dish BD Falcon #353502
6 well dish CELLSTAR #657160
Tissue culture inserts BD Falcon #353090
Fast Green Sigma F7252
Laminin Sigma #L2020
Poly-L-lysine Sigma #P5899
Spring scissors Fine Science Tools 15003-08
Extra Fine Bonn Scissors Fine Science Tools 14084-08
Forceps Dumont #55 11255-20 Inox
HBSS 10X Life Technology 14180-046
BME Life Technology 41010-26

Riferimenti

  1. Kempermann, G., Jessberger, S., Steiner, B., Kronenberg, G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447-452 (2004).
  2. Frotscher, M., Zhao, S., Forster, E. Development of cell and fiber layers in the dentate gyrus. Prog Brain Res. 163, 133-142 (2007).
  3. Muramatsu, R., Ikegaya, Y., Matsuki, N., Koyama, R. Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscienze. 148, 593-598 (2007).
  4. Li, G., Pleasure, S. J. Morphogenesis of the dentate gyrus: what we are learning from mouse mutants. Dev Neurosci. 27, 93-99 (2005).
  5. Hsieh, J. Orchestrating transcriptional control of adult neurogenesis. Genes Dev. 26, 1010-1021 (2012).
  6. Li, G., Pleasure, S. J. Genetic regulation of dentate gyrus morphogenesis. Prog Brain Res. 163, 143-152 (2007).
  7. Collas, P. The current state of chromatin immunoprecipitation. Mol Biotechnol. 45, 87-100 (2010).
  8. Simon, R., et al. A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. Embo J. 31, 2922-2936 (2012).
  9. Pilaz, L. J., Silver, D. L. Live imaging of mitosis in the developing mouse embryonic cortex. J Vis Exp. (88), (2014).
  10. Pacary, E., et al. Visualization and genetic manipulation of dendrites and spines in the mouse cerebral cortex and hippocampus using in utero electroporation. J Vis Exp. (65), (2012).
  11. Hand, R., et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron. 48, 45-62 (2005).
  12. Polleux, F., Ghosh, A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci STKE. (136), 19 (2002).
  13. Shea, K., Geijsen, N. Dissection of 6.5 dpc mouse embryos. J Vis Exp. (2), (2007).
  14. Sugiyama, T., Osumi, N., Katsuyama, Y. The germinal matrices in the developing dentate gyrus are composed of neuronal progenitors at distinct differentiation stages. Dev Dyn. 242, 1442-1453 (2013).
  15. Lechler, T., Fuchs, E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J Cell Biol. 176, 147-154 (2007).
  16. Nichols, A. J., O’Dell, R. S., Powrozek, T. A., Olson, E. C. Ex utero electroporation and whole hemisphere explants: a simple experimental method for studies of early cortical development. J Vis Exp. (74), (2013).
check_url/it/52550?article_type=t

Play Video

Citazione di questo articolo
Venkataramanappa, S., Simon, R., Britsch, S. Ex Utero Electroporation and Organotypic Slice Culture of Mouse Hippocampal Tissue. J. Vis. Exp. (97), e52550, doi:10.3791/52550 (2015).

View Video