Summary

在体内 ,经皮,基于针,肾群众的光学相干断层扫描

Published: March 30, 2015
doi:

Summary

Optical coherence tomography (OCT) is a high resolution imaging technique that allows analysis of tissue specific optical properties providing the means for tissue differentiation. We developed needle based OCT, providing real-time imaging combined with on-the-spot tumor differentiation. This publication describes a method for percutaneous, needle based OCT of renal masses.

Abstract

Optical coherence tomography (OCT) is the optical equivalent of ultrasound imaging, based on the backscattering of near infrared light. OCT provides real time images with a 15 µm axial resolution at an effective tissue penetration of 2-3 mm. Within the OCT images the loss of signal intensity per millimeter of tissue penetration, the attenuation coefficient, is calculated. The attenuation coefficient is a tissue specific property, providing a quantitative parameter for tissue differentiation.

Until now, renal mass treatment decisions have been made primarily on the basis of MRI and CT imaging characteristics, age and comorbidity. However these parameters and diagnostic methods lack the finesse to truly detect the malignant potential of a renal mass. A successful core biopsy or fine needle aspiration provides objective tumor differentiation with both sensitivity and specificity in the range of 95-100%. However, a non-diagnostic rate of 10-20% overall, and even up to 30% in SRMs, is to be expected, delaying the diagnostic process due to the frequent necessity for additional biopsy procedures.

We aim to develop OCT into an optical biopsy, providing real-time imaging combined with on-the-spot tumor differentiation. This publication provides a detailed step-by-step approach for percutaneous, needle based, OCT of renal masses.

Introduction

在过去几十年已经表明肾群众1,2的发病率稳步上升。到现在为止,肾传治疗决策已经作出主要根据MRI和CT成像特性,年龄和合并症的基础。然而,这些诊断方法和临床参数缺乏技巧,真正检测肾质量的恶性潜能。核心活检或细针穿刺有足够的组织进行病理评估(诊断)提供了客观的肿瘤分化程度与敏感性和特异性在95-100%3的范围内。因此活检获得接受可疑肾群众4,5的评价。然而,活组织检查没有足够的组织建立了诊断或具有在10-20%的速度正常肾实质(非诊断)发生整体,甚至高达30%的在肾脏小块(<4厘米,的SRM),延迟由于频繁必要性额外诊断过程活检手术3,5。

光学相干断层扫描(OCT)是一种新型的成像模态具有克服在肾传分化上述障碍的可能性。根据近红外光的散射,十月提供了一个15微米的轴向分辨率的图像在2-3毫米的有效组织渗透( 图1,2)。每组织渗透,组织特异性光散射的所得中,毫米波信号强度的损失被表示为衰减系数(μ 十月 :毫米-1)所描述的费伯等人6。组织学特征可以与可μ 十月值提供用于组织的分化( 图3)的定量参数。

期间发生,恶性细胞显示增加的数目,以及更大和更不规则形状的核更高的折射率,更积极的线粒体。由于这种过表达细胞成分,在μ 十月的变化是比较恶性肿瘤良性肿瘤或未受影响的组织7时可以预期的。

最近我们研究了浅表华侨城良性和恶性肾群众8,9区分的能力。在16名患者,使用外部放置十月探针获得肿瘤组织的手术中十月测量。该控制臂由未受影响的组织中的同一患者的OCT测量。正常组织呈显著较低位数衰减系数相比恶性组织,证实OCT的肿瘤分化的潜力。这种定量分析是在一个类似的方式向分级其他类型的恶性组织中,被施加如尿路上皮癌10,11和外阴上皮瘤分化12。

ENT“>我们的目标是发展成为十月的光学活检,提供实时影像结合在现场肿瘤分化。目前研究的目的是来形容一个经皮,针基础,华侨城患者的方法诊断为固体增强肾质量,这种方法的描述是,就我们所知,在第一评估针的肾肿瘤的可能性基于十月。

Protocol

所提出的过程需要根据批准的学术医学中心的阿姆斯特丹,注册号NL41985.018的机构审查委员会研究方案的地方。书面知情同意从所有参与者必需的。 1.系统对于这个实验,使用傅立叶域OCT系统,在1,280-1,350纳米的波长带13运行。傅立叶域低相干干涉测量法允许连续扫描时相比第一代时域OCT系统,这增加了数据采集速度。注意:OCT系统在〜90°角接口与光纤探针,?…

Representative Results

中的第一25肿瘤(23例),一共有24个成功的OCT程序进行。在一种情况下,一个探测器故障导致无法获得的OCT扫描。两个不良事件(AE)发生,其中详细讨论部分中描述。一般患者的特征见于表1。 华侨城控制台已预装软件获得的数据集的直接定性分析提供实时OCT图像。进一步分析和衰减测量,华侨城的数据可以导出为原始数据,TIFF,DICOM和AVI格式。 μ的华侨城<…

Discussion

在本出版物中,我们报告了经皮,针根据肾,华侨城的可行性。这是华侨城发展的至关重要的第一步成肿瘤的分化临床应用技术,称为“光活检”。我们的第25例患者表现出经皮华侨城是一个简单而安全的过程。光学活检有两个好处比传统的核心活检。首先,将实时采集的OCT数据和分析将提供即时诊断的结果,相对于5-10天的常规病理学的处理时间。第二,OCT具有减​​少的非诊断的程序,这是常?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work is funded by the Cure for Cancer Foundation, Dutch Technology Foundation (STW) and The Netherlands Organisation for Health Research and Development (ZonMw).

Materials

15G / 7.5cm Co-Axial Introducer Needle Angiotech, Gainesville, USA MCXS1612SX
18G / 20cm Trocar Needle Cook medical, Bloomington, USA DTN-18-20.0-U
16G / 20cm Quick-Core Biopsy Gun Cook Medical, Bloomington, USA G07827
Ilumien Optis PCI Optimization System (OCT & FFR) St. Jude medical, St. Paul, USA C408650 Part of Dragonfly Kit.
St. Jude medical, St. Paul, USA. (C4088643)
Dragonfly Duo Imaging Catheter LightLab Imaging, Westford, USA C408644 Part of Dragonfly Kit.
St. Jude medical, St. Paul, USA. (C4088643)
Sterile Dock Cover CFI Med. Solutions, Fenton, USA 200-700-00 Part of Dragonfly Kit.
St. Jude medical, St. Paul, USA. (C4088643)
5ml Luer-lock Syringe Merit Med. Syst., South Jordan, USA C408647
10ml Syringe BD, Franklin Lakes, USA 300912
18G Blunt Fill Needle BD, Franklin Lakes, USA 305180
21G Injection Needle BD, Franklin Lakes, USA 301155
Sterile scalpel BD, Franklin Lakes, USA 372611
NaCl 0,9% solution Braun, Melsungen AG, Germany 222434
Lidocaïne HCl 2% (20mg/ml) solution Braun, Melsungen AG, Germany 3624480
Sterile Ultrasound Gel, Aquasonic 100 Parker Lab. Inc., Fairfield, USA GE424609
Sterile Ultrasound Cover Microtek Med., Alpharetta, USA PC1289EU
Pathology Container
AMIRA software package FEI Visualization Sciences Group, Hillsboro, USA Software platform for 3D data analysis
FIJI software package (open source) Open source, http://fiji.sc/Fiji Open source image processing software

Riferimenti

  1. Jemal, A., Siegel, R., Xu, J., Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300 (2010).
  2. Mathew, A., Devesa, S. S., Fraumeni, J. F., Chow, W. H. Global increases in kidney cancer incidence, 1973-1992. Eur. J. Cancer Prev. 11, 171-178 (2002).
  3. Volpe, A., et al. Contemporary management of small renal masses. Eur. Urol. 60, 501-515 (2011).
  4. Ljungberg, B., et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur. Urol. 58, 398-406 (2010).
  5. Donat, S. M., et al. Follow-up for Clinically Localized Renal Neoplasms. AUA Guideline, J. Urol. 190, 407-416 (2013).
  6. Faber, D. J., van der Meer, F. J., Aalders, M. C. G., van Leeuwen, T. G. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Optics Express. 12, 4353-4365 (2004).
  7. Xie, T. Q., Zeidel, M. L., Pan, Y. T. Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes. Optics Express. 10, 1431-1443 (2002).
  8. Barwari, K., et al. Differentiation between normal renal tissue and renal tumours using functional optical coherence tomography: a phase I in vivo human study. BJU. Int. 110, E415-E420 (2012).
  9. Barwari, K., et al. Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report. J. Endourol. 25, 311-315 (2011).
  10. Cauberg, E. C., et al. Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder. J. Biomed. Opt. 15, 066013 (2010).
  11. Bus, M. T., et al. Volumetric in vivo visualization of upper urinary tract tumors using optical coherence tomography: a pilot study. J. Urol. 190, 2236-2242 (2013).
  12. Wessels, R., et al. Optical coherence tomography in vulvar intraepithelial neoplasia. Journal of Biomedical Optics. 17, (2012).
  13. Yun, S. H., Tearney, G. J., de Boer, J. F., Iftimia, N., Bouma, B. E. High-speed optical frequency-domain imaging. Optics Express. 11, 2953-2963 (2003).
  14. Kodach, V. M., Kalkman, J., Faber, D. J., van Leeuwen, T. G. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm. Biomed. Opt. Express. 1, 176-185 (2010).
  15. Kinkelder, R., de Bruin, D. M., Verbraak, F. D., van Leeuwen, T. G., Faber, D. J. Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model. J. Biophotonics. 6, 314-320 (2013).
  16. Baxter, G. M., Sihdu, P. S. . Ultrasound of the Urogenital System. , (2006).
check_url/it/52574?article_type=t

Play Video

Citazione di questo articolo
Wagstaff, P. G., Swaan, A., Ingels, A., Zondervan, P. J., van Delden, O. M., Faber, D. J., van Leeuwen, T. G., de la Rosette, J. J., de Bruin, D. M., Laguna Pes, M. P. In Vivo, Percutaneous, Needle Based, Optical Coherence Tomography of Renal Masses. J. Vis. Exp. (97), e52574, doi:10.3791/52574 (2015).

View Video