Summary

小梁响应压升高在活的人类眼睛

Published: June 20, 2015
doi:

Summary

小梁网(TM)迁移进入施累姆氏管的空间可以由急性压力上升来诱导由ophthalmodynamometer,并通过谱域光学相干断层扫描观察。该方法的目标是要量化活流出道急性压力升高的在生物体组织的原位的形态反应。

Abstract

小梁网(TM)的机械特性都与流出阻力和眼内压(IOP)调节。这种技术背后的基本原理是直接观察以旧换新急性眼压升高的机械反应。在扫描之前,眼压测量在基线和在IOP升高。角膜缘是在基线和在高眼压扫描谱域光学相干断层扫描(ophthalmodynamometer(ODM)施加于30挤压力g)。扫描处理,以提高使用ImageJ房水外流通路的可视化。血管地标被用于识别在基线和高眼压扫描体积相对应的位置。 Schlemm管(SC)的截面积(SC-CSA)和由前向沿其长轴后路SC长度手动在SC的1毫米段内10个位置测量。平均数内到外壁上的距离(短轴长度)计算为SC的由划分区域其长轴长度。为了检查邻近组织的效果的IOP升高的贡献,重复测量不具有和具有平滑肌松弛与托滴注。 TM迁移进入SC由TM刚度抵抗,但由它附着到相邻的平滑肌睫状体内的支持增强。这种技术是在第一测量生理条件下,人眼内的活的人类TM响应于压力上升的原位

Introduction

青光眼是全球第二大不可逆转的失明1的原因。升高的眼内压(IOP)是用于青光眼2-7的存在和发展的主要致病危险因素。  眼压是由房水8的形成和流出之间的平衡调节。最大流出阻力的位置是juxtacanicular组织和Schlemm管(SC)的内壁,SC和小梁网(TM)9-11之间的接口。而TM刚度可以在IOP升高的脸向预防SC崩溃,奥弗等人 12最近证明在青光眼基因表达被改变,从而提高SC内皮变硬,妨碍形成气孔,导致高眼压中青光眼13。 TM形态和刚度与相关设施的流出14,15,强调牛逼他需要测量其生物力学特性。

以旧换新的原子力显微镜测量表明高架刚度眼青光眼患者(81千帕)捐赠的眼睛捐助者无青光眼(4.0千帕)16相比,但这些测量是在解剖离体组织进行。后TM被锚定到经由纵肌细胞中插入到外lamellated和cribiform TM 17的前肌腱睫状肌。睫状肌(CM)的活动可能会增加TM绷紧,酷似TM升高17的刚度。观察改建耐诱导的平滑肌扰动SC崩溃的能力已经显示出在动物模型18。我们已经证明了能够非侵入性图像的主房水外流系统在活的人的眼睛的远端并包括SC使用谱域光学相干断层扫描(OCT)<SUP> 19-21。使用这种技术,我们已经证明,量化TM和SC急性IOP升高22的形态反应的能力。

本文所描述的方法的总体目标是量化活流出道急性IOP升高的在生物体组织中原位形态响应。这种技术具有检查在生理条件下对TM,其中既包括收缩纤维活性的T M和CM以TM刚度内贡献相比,在解剖组织制成公布的测量的优点。背后采用这种技术来观察机械TM响应的理由是,它为我们提供了其他原因无法分析上市公司以旧换新,我们现在知道被直接链接到水流出阻力,眼压第13条的力学性能。辨别收缩组织对整体刚度,小的银的贡献受试者室温进行了检查,并没有与抑制平滑肌的活动由托的管理。

Protocol

伦理声明:批准从医学匹兹堡大学的大学机构审查委员会获得的对象招募开始之前。参与研究之前提供所有受试者签署知情同意书。 1.数据采集压力上升取基线测量(眼压和OCT测量)灌输一滴0.5%丙美卡因的入眼睛。等待3分钟的疗效。 轻轻施加压力的时间巩膜与ophthalmodynamometer,将30g在第1组,和5,然后用10克队列2。然后取所需的(眼压及OCT)测量如下眼压测量<ol…

Representative Results

利用这些数据采集和图像分析技术,对流出道形态学参数眼压小和大的变化,如SC截面积的影响,获得( 图1)。我们可以看到,水平高的眼压增加产生的SC的可观察到的塌陷,因为由大的减少的截面面积表示。眼睛看来是能够容纳小增加眼压,就证明了缺乏变化的SC-CSA的( 图1)。这些结果表明,该技术能够定量流出道的锐角眼压挑战的形态反应。技术或技术没有其他家?…

Discussion

本技术利用非侵入性的观察软组织的机械响应量化的SC崩溃。利用人类尸体的眼睛今后的工作中,需要解剖后校准组织变形实际组织硬度。但是,这样的研究将遭受先前流出模型的相同的限制;具体地,该活肌到组织张力的贡献将不存在。在哺乳动物活眼模型进一步校准可以让影像和TM的刚度直接测量校准。

有几个限制的技术。它尚待证实在其他平台华侨城。该文献表明,相同…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Supported in part by National Institute of Health contracts R01-EY13178, and P30-EY08098 (Bethesda, MD), the Eye and Ear Foundation (Pittsburgh, PA), and unrestricted grants from Research to Prevent Blindness (New York, NY).

Materials

Spectral Domain OCT Zeiss Cirrus
Imaging Workstation Apple iMac
Ophthalmodynamometer (Baillairt Matalene Ophthalmodynamometer, Surgical instruments CO., Inc. New York, NY)
Image Processing Program rsb.info.nih.gov/ij ImageJ, FIJI

Riferimenti

  1. Quigley, H. A., Broman, A. T. The number of people with glaucoma worldwide 2010 and 2020. The British journal of ophthalmolog. 90, 262-267 (2006).
  2. Sommer, A., et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Archives of ophthalmolog. 109, 1090-1095 (1991).
  3. Sommer, A., et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. The New England journal of medicin. 325, 1412-1417 (1991).
  4. Leske, M. C., Connell, A. M., Wu, S. Y., Hyman, L., Schachat, A. P. Distribution of intraocular pressure. The Barbados Eye Study. Archives of ophthalmolog. 115, 1051-1057 (1997).
  5. Leske, M. C., Wu, S. Y., Hennis, A., Honkanen, R., Nemesure, B. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmolog. 115, 85-93 (2008).
  6. Mitchell, P., Lee, A. J., Rochtchina, E., Wang, J. J. Open-angle glaucoma and systemic hypertension: the blue mountains eye study. Journal of glaucom. 13, 319-326 (2004).
  7. Mitchell, P., Smith, W., Attebo, K., Healey, P. R. Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmolog. 103, 1661-1669 (1996).
  8. Gabelt, B., Kaufman, P., Kaufman, P. L. . Adler’s Physiology of the Ey. , 237-289 (2003).
  9. Grant, W. M. Experimental aqueous perfusion in enucleated human eyes). Archives of ophthalmolog. 69, 783-801 (1963).
  10. Jocson, V. L., Sears, M. L. Experimental aqueous perfusion in enucleated human eyes. Results after obstruction of Schlemm’s canal. Archives of ophthalmolog. 86, 65-71 (1971).
  11. Maepea, O., Bill, A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Experimental eye researc. 54, 879-883 (1992).
  12. Johnstone, M. A., Grant, W. G. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. American journal of ophthalmolog. 75, 365-383 (1973).
  13. Overby, D. R., et al. Altered mechanobiology of Schlemm’s canal endothelial cells in glaucoma. Proceedings of the National Academy of Sciences of the United States of Americ. , (2014).
  14. Allingham, R. R., de Kater, A. W., Ethier, C. R. Schlemm’s canal and primary open angle glaucoma: correlation between Schlemm’s canal dimensions and outflow facility. Experimental eye researc. 62, 101-109 (1996).
  15. Camras, L. J., Stamer, W. D., Epstein, D., Gonzalez, P., Yuan, F. Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Investigative ophthalmolog., & visual scienc. 53, 5242-5250 (2012).
  16. Last, J. A., et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Investigative ophthalmolog., & visual. 52, 2147-2152 (2011).
  17. Lutjen-Drecoll, E. Functional morphology of the trabecular meshwork in primate eyes. Progress in retinal and eye researc. 18, 91-119 (1999).
  18. Li, G., et al. Pilocarpine-induced dilation of Schlemm’s canal and prevention of lumen collapse at elevated intraocular pressures in living mice visualized by OCT. Investigative ophthalmolog., & visual scienc. 55, 3737-3746 (2014).
  19. Francis, A. W., et al. Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Investigative ophthalmolog., & visual. 53, 5198-5207 (2012).
  20. Kagemann, L., et al. 3D visualization of aqueous humor outflow structures in-situ in humans. Experimental eye researc. 93, 308-315 (2011).
  21. Kagemann, L., et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Investigative ophthalmolog., & visual. 51, 4054-4059 (2010).
  22. Kagemann, L., et al. IOP Elevation Reduces Schlemm’s Canal Cross-sectional Area. Investigative ophthalmolog & visual scienc. , (2014).
check_url/it/52611?article_type=t

Play Video

Citazione di questo articolo
Kagemann, L., Wang, B., Wollstein, G., Ishikawa, H., Mentley, B., Sigal, I., Bilonick, R. A., Schuman, J. S. Trabecular Meshwork Response to Pressure Elevation in the Living Human Eye. J. Vis. Exp. (100), e52611, doi:10.3791/52611 (2015).

View Video