Summary

Live-Imaging af Nikotin induceret Calcium Signaling og neurotransmitterfrigivelse Langs ventrale Hippocampale Axoner

Published: June 24, 2015
doi:

Summary

We developed a gene-chimeric preparation of ventral hippocampal – accumbens circuit in vitro that allows direct live imaging to analyze presynaptic mechanisms of nicotinic acetylcholine receptors (nAChRs) mediated synaptic transmission. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of synaptic plasticity.

Abstract

Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)–accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro.

Introduction

Cholinerg modulering af kredsløb excitabilitet bidrager til grundlæggende aspekter af kognition og ændret cholinerg modulation er en funktion af neurodegenerative og neuropsykiatriske lidelser, herunder Alzheimers sygdom, Parkinsons sygdom, skizofreni og afhængighed 1-4. En etableret mekanisme af cholinerge lettelse af synaptisk transmission i CNS er via direkte aktivering af nAChR'er lokaliseret ved præsynaptiske steder. Aktivering af disse præ-synaptiske receptorer fører til øget intracellulær Ca2 + ([Ca2 +] i) i præ-synaptiske terminaler – både direkte, på grund af den relativt høje calcium konduktans af visse nAChR undertyper, og indirekte via intracellulære signalering kaskader 5, hvilket vil styrke neurotransmitterfrigivelse. Faktisk har aktiveringen af ​​præsynaptiske nAChRs blevet forbundet med ændringer i frigivelse af en lang række forskellige neurotransmittere, herunder glutamat, GABA, ACh, ennd dopamin 6-10. Selv om denne proces er blevet undersøgt indirekte ved hjælp elektrofysiologiske metoder på forskellige synapser, optiske reportere i [Ca2 +] i og synaptisk vesikel genanvendelse tillade mere direkte og tidsligt præcis måling af præsynaptiske fænomener.

Præsynaptiske lokalisering af nAChR'er er blevet demonstreret overbevisende med direkte immuno-guld mærkning af nAChR'er ved elektronmikroskopiske (EM) niveau 11,12. Adskillige andre teknikker har også været anvendt til at behandle nAChR lokalisering indirekte, herunder påvisning placeringer af nAChRs subunit- fluorescerende proteinkimærer i dyrkede neuroner 13,14, elektrofysiologiske registrering af nAChR strømme i synaptiske terminaler 15,16, overvågning nikotin inducerede ændringer i [Ca 2 +] i i synaptiske nerveender ved levende celler 17, og indirekte overvågning af neurotransmitter frigørelse ved den synaptiske terminal vedlevende celle billeddannelsesteknikker med fluorescerende indikatorer, herunder exocytose af synaptiske vesikler ses af styryl amfipatiske FM farvestoffer (FM1-43 og FM4-64) og / eller synapto-pHluorin og ved specifikke fluorescerende neurotransmitter reportere, såsom CNiFERs for ACh og iGluSnFr for glutamat 18-20. Samlet set har disse nuværende tilgange til at identificere præ-synaptisk lokalisering af nAChRs er komplicerede, og kræver særlige systemer og teknikker til at tillade pålidelig identifikation og fysiologiske overvågning af præ-synaptisk aktivitet.

Her beskriver vi protokoller og udstyr til en in vitro co-kultur system i en ventral hippocampalt (vHipp) – nucleus accumbens (NACC) kredsløb, der giver direkte adgang til at identificere og analysere både præ- og postsynaptiske komponenter af synaptisk transmission. Vi viser eksempler på præ-synaptisk lokalisering af nAChR'er og levende celler billeddannelse af nAChR medieret Ca2 + signalering og neurotransmitter release along vHipp axoner. En naturlig (og ligetil) forlængelse af protokollen præsenteres her er forberedelsen af ​​præ- og post-synaptiske kontakter består af neuroner fra forskellige genotyper. På denne måde kan vurderes af bidraget fra en bestemt genprodukt til præ- og / eller post-synaptiske mekanismer af gradueringen direkte.

Protocol

Alle dyreforsøg blev udført i overensstemmelse med National Institutes of Health Guide til Pleje og anvendelse af forsøgsdyr (NIH Publications No. 80-23, revideret 2012) og undersøgelser blev godkendt af Institutional Animal Care og brug for Forskning komitéer på Stony Brook University (# 1618 og # 1792). 1. vHipp-NACC Synaptiske Co-kulturer Sacrifice mus (postnatal dag 0 – 3, fra vildtype (WT) eller α7 nAChRs transgene mus linie) med CO2. Halshugge hver hvalp og…

Representative Results

Den anvendte præparat består af gen kimære co-kulturer af vHipp-NACC kredsløb i vitro. Fremskrivninger stammer fra vHipp microslices, som præ-synaptisk axonal input, kan gøre synaptiske kontakter med postsynaptiske mål, de spredte neuroner fra NACC. Nikotin inducerede en vedvarende (≥ 30 min) lettelse af glutamaterg transmission fra NACC neuroner innerveres af vHipp axoner 21 og forlænget calcium signalering ad vHipp axoner 5 via præ-synaptisk α7 * nAChRs. <p class="jove_co…

Discussion

Forberedelse co-kultur beskrevet re-kapitulerer ventrale hippocampus-accumbens kredsløb i vitro. Denne forberedelse tillader forholdsvis enkel og pålidelig undersøgelse af de rumlige og tidsmæssige profiler, hvorved aktivering af præsynaptiske nAChRs fremkalder forbedrede glutamaterg transmission 5, 21.

Co-kulturer er defineret som væksten af forskellige specifikke celletyper i en skål, som kan give fysiologiske betingelser in vitro til at påvise in v…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank Yehui Qin and Mallory Myers for technical support. We also thank Dr. Sigismund Huck for providing us the anti-α4-ECD antibody. This work is supported by National Institutes of Health grant NS22061 to L. W. R.

Materials

1, Culture Media (50 ml)
Neurobasal  GIBCO 10888022 48 ml
B-27 Supplements GIBCO 0080085-SA 1 ml
Penicillin-Streptomycin GIBCO 10908-010 0.5 ml
GlutaMAX Supplement GIBCO 35050-061 0.5 ml
Brain-derived neurotrophic factor (BDNF) GIBCO 15140-122 20 ng/ml
2, washing media (HBSS, 100 ml)
HBSS, no calcium, no magnesium, no phenol red  GIBCO 14175-095 99 ml
HEPES ( 1M) GIBCO 15630-130 1 ml
3, HEPES buffered saline  (HBS)   pH=7.3
NaCl Sigma S9888  135 mM
KCl Sigma P9333  5 mM
MgCl2 Sigma M8266  1 mM
CaCl2, Sigma C1016  2 mM
HEPES Sigma H3375  10 mM
Glucose Sigma G0350500  10 mM
4, HBS Cocktail for live imaging pH=7.3
NaCl Sigma S9888  135 mM
KCl Sigma P9333  5 mM
MgCl2 Sigma M8266  1 mM
CaCl2, Sigma C1016  2 mM
HEPES Sigma H3375  10 mM
Glucose Sigma G0350500  10 mM
tetrodotoxin  Tocris 1078 2 µM
bicuculline Tocris 131 10 µM
D-AP-5 Tocris 105 50 µM
CNQX Tocris 1045 20 µM
LY341495 Tocris 1209 10 µM
5, Calcium-free  HBS   pH=7.3
NaCl Sigma S9888  135 mM
KCl Sigma P9333  5 mM
MgCl2 Sigma M8266  1 mM
HEPES Sigma H3375  10 mM
Glucose Sigma G0350500  10 mM
6, 56 mM Potassium ACSF pH=7.4
NaCl Sigma S9888 119 mM
KCl Sigma P9333 56 mM
MgSO4.7H Sigma M1880 1.3 mM
CaCl2 Sigma C1016 2.5 mM
NaH2PO4 Sigma S8282 1 mM
NaHCO3 Sigma S5761 26.2 mM
Glucose Sigma G0350500  10 mM

Riferimenti

  1. Changeux, J. P., et al. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev. 26 (2-3), 198-216 (1998).
  2. Levin, E. D. Nicotinic receptor subtypes and cognitive function. J Neurobiol. 53 (4), 633-640 (2002).
  3. Dani, J. A., Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 47, 699-729 (2007).
  4. Mineur, Y. S., Picciotto, M. R. Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends Pharmacol Sci. 31 (12), 580-586 (2010).
  5. Zhong, C., Talmage, D. A., Role, L. W. Nicotine elicits prolonged calcium signaling along ventral hippocampal axons. PloS one. 8 (12), e82719 (2013).
  6. McGehee, D. S., Heath, M. J., Gelber, S., Devay, P., Role, L. W. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science. 269 (5231), 1692-1696 (1995).
  7. Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., Dani, J. A. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 383 (6602), 713-716 (1996).
  8. Dickinson, J. A., Kew, J. N., Wonnacott, S. Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol. 74 (2), 348-359 (2008).
  9. Zappettini, S., Grilli, M., Salamone, A., Fedele, E., Marchi, M. Pre-synaptic nicotinic receptors evoke endogenous glutamate and aspartate release from hippocampal synaptosomes by way of distinct coupling mechanisms. Br J Pharmacol. 161 (5), 1161-1171 (2010).
  10. Zappettini, S., et al. Presynaptic nicotinic alpha7 and non-alpha7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action. PloS one. 6 (2), e16911 (2011).
  11. Fabian-Fine, R., et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 21 (20), 7993-8003 (2001).
  12. Jones, I. W., Barik, J., O’Neill, M. J., Wonnacott, S. Alpha bungarotoxin-1.4 nm gold: a novel conjugate for visualising the precise subcellular distribution of alpha 7* nicotinic acetylcholine receptors. J Neurosci Methods. 134 (1), 65-74 (2004).
  13. Nashmi, R., et al. Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci. 23 (37), 11554-11567 (2003).
  14. Drenan, R. M., et al. Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits. Mol Pharmacol. 73 (1), 27-41 (2008).
  15. Wu, J., et al. Electrophysiological, pharmacological, and molecular evidence for alpha7-nicotinic acetylcholine receptors in rat midbrain dopamine neurons. J Pharmacol Exp Ther. 311 (1), 80-91 (2004).
  16. Parikh, V., Ji, J., Decker, M. W., Sarter, M. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci. 30 (9), 3518-3530 (2010).
  17. Nayak, S. V., Dougherty, J. J., McIntosh, J. M., Nichols, R. A. Ca(2+) changes induced by different presynaptic nicotinic receptors in separate populations of individual striatal nerve terminals. J Neurochem. 76 (6), 1860-1870 (2001).
  18. Richards, C. I., et al. Trafficking of alpha4* nicotinic receptors revealed by superecliptic phluorin: effects of a beta4 amyotrophic lateral sclerosis-associated mutation and chronic exposure to nicotine. J Biol Chem. 286 (36), 31241-31249 (2011).
  19. Colombo, S. F., Mazzo, F., Pistillo, F., Gotti, C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol. 86 (8), 1063-1073 (2013).
  20. St John, P. A. Cellular trafficking of nicotinic acetylcholine receptors. Acta Pharmacol Sin. 30 (6), 656-662 (2009).
  21. Zhong, C., et al. Presynaptic type III neuregulin 1 is required for sustained enhancement of hippocampal transmission by nicotine and for axonal targeting of alpha7 nicotinic acetylcholine receptors. J Neurosci. 28 (37), 9111-9116 (2008).
  22. Jacobowitz, D. M., Abbott, L. C. . Chemoarchitectonic Atlas of the Developing Mouse Brain. , (1998).
  23. Betz, W. J., Mao, F., Bewick, G. S. Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci. 12 (2), 363-375 (1992).
  24. Amaral, E., Guatimosim, S., Guatimosim, C. Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals. Methods Mol Biol. 689, 137-148 (2011).
  25. Garduno, J., et al. Presynaptic alpha4beta2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus. J Neurosci. 32 (43), 15148-15157 (2012).
  26. Guo, J. Z., Liu, Y., Sorenson, E. M., Chiappinelli, V. A. Synaptically released and exogenous ACh activates different nicotinic receptors to enhance evoked glutamatergic transmission in the lateral geniculate nucleus. J Neurophysiol. 94 (4), 2549-2560 (2005).
  27. Szabo, S. I., Zelles, T., Vizi, E. S., Lendvai, B. The effect of nicotine on spiking activity and Ca2+ dynamics of dendritic spines in rat CA1 pyramidal neurons. Hippocampus. 18 (4), 376-385 (2008).

Play Video

Citazione di questo articolo
Zhong, C., Talmage, D. A., Role, L. W. Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons. J. Vis. Exp. (100), e52730, doi:10.3791/52730 (2015).

View Video