Summary

在小型组织培养体系培养老鼠心脏瓣膜

Published: October 19, 2015
doi:

Summary

Here, we present an ex vivo flow model in which murine cardiac valves can be cultured allowing the study of the biology of the valve.

Abstract

Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure.

Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive.

In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.

Introduction

心脏瓣膜疾病是发病率和死亡率在西方世界的一个主要原因;其患病率随着年龄的增加,它会影响人口75年的10%以上和更老1。心脏的全身性部分的阀门,主动脉和二尖瓣,大多是受影响的。心脏瓣膜病的特征是所述阀的高度组织的结构,这导致的机械性能2变更的损失。结构完整性,因此对阀的功能是至关重要的。

所述瓣膜的瓣叶被包括瓣膜间质细胞(VIC),瓣膜内皮细胞(VEC),和细胞外基质,这是高度组织在一个分层图案3,4的。所述的VIC负责对ECM合成,降解和组织。因素从血液,内皮细胞发出或居住在编排上其功能的VIC的ECM行为。此外,机械力造成层流或振荡剪切应力,影响的VIC 5的行为压缩或拉伸应力在心动周期中作用于单张。

为了理解如何在阀的结构被调整,首先必须理解的VIC到心脏周期期间所经历的刺激的多样化如何作出反应。 在体外研究已经非常翔实有关瓣膜细胞的特征和能力。这些细胞在体外的反应,但是,可能不总是精确地模仿体内响应6;例如,VIC的对刺激的响应是依赖于内皮的存在和ECM 组合物5。此外,瓣膜细胞对刺激的响应取决于其特定的位置,在小叶7。除了生化刺激,瓣膜细胞的行为是通过作用Ø机械力确定n个 8。阀的各区域进行其自己的特定的一组血液动力学应力。尽管目前的体外模型表明,机械力的作用是瓣膜结构 5的重要决定因素,相关的机制仍不清楚。虽然体内模型提供了深入了解潜在的心脏瓣膜发展9,10的分子机制,见解成人瓣膜生物学仍然是难以捉摸的。

因此,开发了体的流动的模型,其中该心脏瓣膜可以在其在心脏中自然位置的时间11长时间进行培养。这具有的优点是,阀保持在其天然构型和的VIC经历相同的环境作为体内,使得的VIC响应的刺激尽可能自然。此外,阀门在其自然位置在心脏的文化有利于使各瓣膜区域相关的血液动力学应力。在此体外模型也就是说,微型组织培养系统(MTCS),所述阀可进行不同的生物化学和血液动力学刺激允许其在心脏瓣膜重塑作用的调查。

Protocol

该协议遵循动物研究伦理委员会的LUMC准则。 1.准备仪器,培养基和MTCS 注:请在层流罩的所有准备工作。该MTCS灌注腔,泡沫陷阱,站在利伯等人 ,2010 11描述。 消毒镊子和微型剪刀用70%的乙醇。制备一个5毫升注射器用21G针用无菌台氏缓冲液(130毫摩尔NaCl,5.4毫米氯化钾,6.0毫摩尔的Hepes,1.2mM的MgSO 4干燥,1.2mM的磷酸?…

Representative Results

主动脉瓣(图2)或二尖瓣11可以是培养至少3天。通过在打开位置(其代表主动脉瓣和二尖瓣舒张位置收缩位置)培养,瓣膜细胞保持存活。无细胞死亡被观察为由于缺少TUNEL阳性细胞 (图2H,I)或裂解的caspase-3表达的测定(未示出和Lieber等人,2010 11)。胶原分布(如可视化通过马森三色染色)类似于天然条件时在1%血清?…

Discussion

在培养该心脏小鼠阀关键步骤包括使来自鼠标切除心脏的和结扎在灌注腔尽可能短,以确保在垂直于阀的可行性的针和结扎之间的时间,以确保流动的正确方向。此外,检查在灌注腔结扎后的流量不中确保适当的插入和针结扎。关键是要保持无菌培养和防止气泡在油管,这有可能被困在心脏阻碍的流动。

用于心脏的灌注介质的总体积是45毫升(注意,即通过心脏灌注介质是不…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This study is supported by the Dutch Heart Foundation and the Netherlands Institute for Regenerative Medicine.

Materials

Dulbecco’s Modified Eagle Medium life technolgies 10569-010
Fetal Bovine Serum life technolgies 26140
Insulin-Transferrin-Selenium life technolgies 41400-045
Antibiotic-Antimycotic life technolgies 15240-06
Silk 7-0 Ethicon 768G
100 mm culture dish Greiner bio-one 664160
50 ml tube Greiner bio-one 227261
5 ml syringe BD 309649
21 G needle BD 304432
Heparin LEO 012866-08
Forceps Fine Science Tools 11295-00
Micro Scissors, Economy, Vannas-type Tedpella 1346
Silicon tubing Thermo Scientific 8060-0020 I.D. x O.D. x Wall: 1.59 x 3.18 x 0.79 mm
Silicon tubing for pump Masterflex 96400-13 I.D. x O.D. x Wall: 0,8 x1,59 x 0,40 mm
Biocompatible glue (Histoacryl) B. Braun 1050071
precision vaporizer Dräger Vapor 200
peristaltic roller pump Masterflex 7521-35
Easy-load pump head Masterflex 7518-00
Flow chamber see Lieber et al., 2010
Bubble trap see Lieber et al., 2010

Riferimenti

  1. Go, A. S., et al. Heart Disease and Stroke Statistics–2014 Update: A Report From the American Heart Association. Circulation. 129, e28-e292 (2013).
  2. Gould, S. T., Srigunapalan, S., Simmons, C. A., Anseth, K. S. Hemodynamic and Cellular Response Feedback in Calcific Aortic Valve Disease. Circulation Research. 113 (2), 186-197 (2013).
  3. Kruithof, B. P. T., Krawitz, S. A., Gaussin, V. Atrioventricular valve development during late embryonic and postnatal stages involves condensation and extracellular matrix remodeling. Developmental biology. 302 (1), 208-217 (2007).
  4. Schoen, F. J. Cardiac valves and valvular pathology: update on function, disease, repair, and replacement. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology. 14 (4), 189-194 (2005).
  5. Balachandran, K., Sucosky, P., Yoganathan, A. P. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. International journal of inflammation. , 263870 (2011).
  6. Butcher, J. T., Simmons, C. A., Warnock, J. N. Mechanobiology of the Aortic Heart Valve. The Journal of heart valve disease. 17 (1), 62-73 (2008).
  7. Balachandran, K., Konduri, S., Sucosky, P., Jo, H., Yoganathan, A. P. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Annals of biomedical engineering. 34 (11), 1655-1665 (2006).
  8. Weiler, M., Hwai Yap, C., Balachandran, K., Padala, M., Yoganathan, A. P. Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. Journal of Biomechanics. 44, 1459-1465 (2011).
  9. Combs, M. D., Yutzey, K. E. Heart valve development: Regulatory networks in development and disease. Circulation Research. 105, 408-421 (2009).
  10. Kruithof, B. P. T., Duim, S. N., Moerkamp, A. T., Goumans, M. -. J. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation; research in biological diversity. 84 (1), 89-102 (2012).
  11. Lieber, S. C., Kruithof, B. P. T., Aubry, N., Vatner, S. F., Gaussin, V. Design of a miniature tissue culture system to culture mouse heart valves. Annals of biomedical engineering. 38 (3), 674-682 (2010).
check_url/it/52750?article_type=t

Play Video

Citazione di questo articolo
Kruithof, B. P., Lieber, S. C., Kruithof-de Julio, M., Gaussin, V., Goumans, M. J. Culturing Mouse Cardiac Valves in the Miniature Tissue Culture System. J. Vis. Exp. (104), e52750, doi:10.3791/52750 (2015).

View Video