Summary

调查深皮层的功​​能和皮层下结构采用立体定向脑电图:由前扣带皮层的经验教训

Published: April 15, 2015
doi:

Summary

立体定向脑电图(SEEG)是一种手术技术在癫痫手术用于帮助本地化癫痫病灶。它也提供了一个独特的机会来调查大脑功能。这里,我们描述SEEG如何可以被用来研究在人受试者认知过程。

Abstract

立体定向脑电图(SEEG)是用于本地化的癫痫患者病灶与药物难治性癫痫的技术。此过程涉及多个深部电极的慢性放置到大脑硬膜下通过栅电极放置通常无法进入的地区。 SEEG从而提供了一个独特的机会,研究脑功能。在本文中,我们展示SEEG如何被用于研究背侧前扣带皮层(DACC)的认知控制的作用。我们包括SEEG过程的描述,显示了电极的外科手术位置。我们描述了从科目同意的,而他们从事的工作行为记录局部场电位(LFP)数据所需的组件和程序。在提供的例子中,受试者中发挥认知干扰任务,我们证明信号如何从电极在背侧前扣带皮层,区域intim记录和分析ately参与决策。我们的结论与方法,使此方法可用于研究人类认知过程的进一步建议。

Introduction

癫痫,一个常见的神经系统疾病的特点是多反复发作随着时间的推移,占疾病1的全 ​​球负担1%。抗癫痫药物治疗未能在20个控制发作-患者2,3 30%。在这些药物难治的患者,癫痫手术常常表示4,5。进行手术的决定需要定位检重点,一个先决条件,制定手术方案。最初,非侵入性的技术被用来lateralize和本地化的扣押重点。脑电图(EEG),例如,措施皮层电活动记录,从放置在头皮电极,并且常常可以提供有关的发作焦点的位置的足够信息。此外,磁共振成像(MRI)可以证明离散病变,如海马硬化,经典的病理见于药物难治性癫痫是最常见的形式,近中吨emporal叶癫痫(MTLE)。

频繁,然而,非侵入性的后处理是无法识别发作焦点。在这些情况下,侵入的脑电图(ECOG)脑电极需要定位的焦点和指导进一步手术治疗6。脑电图是使用利用放置在与大脑直接接触的电极以测量电活性的神经生理技术。网格或表面带(硬膜)电极放置在脑,一个过程,需要一个开颅(除去骨瓣的)和大开口硬脑膜的表面上。这些表面电极可被放置在发作起始的推定面积(S)。电极的远端通过皮肤中的小开口隧道,并连接到在癫痫监视单元(EMU)的记录设备。在动车组,病人是通过连续的视频脑电图和监控录像,为临床癫痫发作。这种技术我S代表在相对大面积的皮质表面的收集​​长期(几天到几周)发作和发作间放电的记录有用。虽然这些颅内录音是非常宝贵的临床调查癫痫病灶和传播,他们也为我们提供了机会,调查认知功能和神经生理学的人类经历专门设计的行为任务。

脑电图使用硬膜下栅电极已被用于研究皮质功能,包括感觉和语言处理的各个方面。作为许多例子之一,查德等人证明了口服的肌肉的协调时间中形成的音节为口语在腹侧感觉运动皮层,鉴定为人类语音感觉皮层7的区域。此外,脑电图与硬膜下格栅位置也被用来研究由人类能够安泰信机制d可人群中的特定声音:所谓的“鸡尾酒会效应”8,9。脑电图记录表明,有两种不同的神经元频带动态地跟踪语音流,这两个低频相位和高伽马振幅的波动,并且有不同的加工位点 – 1'调制'站点跟踪两个扬声器,以及一个'选择'网站跟踪出席健谈5。

脑电图的另一个新兴应用与硬膜下电极放置为与脑计算机接口(景气)使用的潜力,其中“解码”神经元的活动,以驱动外部输出。该技术具有使患者有严重的脑或脊髓损伤与世界沟通和操纵假肢10,11的潜力。

而硬膜下格栅的位置一直对本港超级的理解做出了贡献ficial皮层区和在识别皮质癫痫病灶是有用的,这种技术确实需要开颅及其伴随的风险,并且通常仅限于研究大脑的外表面。立体定向脑电图(SEEG)是一种技术,使深致痫灶12的评估。在法国和意大利的使用有着悠久的历史,它也越来越多地被用于美国13。 SEEG涉及安置多个电极(通常为10 – 16)深的大脑通过小(几毫米)麻花钻颅骨钻孔的物质中。 SEEG超过硬膜网格放置优点包括其更少侵入性,易于在需要时检查双边半球,并产生发作传播的三维地图的能力。此外,这些电极使深致痫灶的标识,以前很难确定与表面电极。此过程还providES的机会,以调查在神经生理学和深皮质结构,如边缘系统中,mesoparietal皮质,mesotemporal皮层和眶额皮质,所有这些在以前是很难直接观察在人类中的功能。

本文演示SEEG如何利用在背前扣带皮层(DACC)调查的认知功能。所述DACC是一个广泛的研究大脑区域,但它也是理解最不好之一。考虑人类认知一个显著区域,则很可能该DACC是中央的决定中的由环境14施加连续变化的需求的上下文中动态神经处理。研究两种灵长类15,16和人类17表明DACC集成了给定的动作的潜在风险和回报,尤其是在多个同时相互矛盾的情况下要求18-21和米odulates在以前的行动及其结果14,22,23的情况下这些决定。

的多源干扰任务(MSIT),一个斯特鲁普状行为的任务,经常被用来调查冲突处理在DACC。该MSIT任务,招募参与处理由DACC 24,25调节多个域的神经元激活DACC。此任务特别通过测试决策,目标检测,新奇检测,错误检测,响应选择和刺激/响应的竞争特征激活DACC。此外,MSIT任务引入认知干扰,这是用于本研究,以DACC使用SEEG同步冲突的刺激神经反应的多个维度。

Protocol

确保每个病人的适用性研究性学习回顾和合适的患者必须同意参加根据当地IRB程序的研究。 1.患者选择SEEG与研究患者选择SEEG 注意:癫痫病人必须由多学科团队组成的癫痫病,神经心理学家和神经外科医生进行临床评估。 确保患者具有难治局灶性癫痫,定义为不到的抗癫痫药物至少2充分试验反应。 确保非侵入性技术未能本地化的致痫灶。 确?…

Representative Results

一旦患者被选择用于SEEG电极放置,他/她经历体积的T2和T1对比增强MRI。 SEEG电极轨迹然后使用体积MRI序列的立体定向导航( 图1)的计划。该技术允许对从结构内皮层深局部场电位如背侧前扣带皮层(浅橙色的轨迹, 图1),这将是不可能的,典型的表面电极放置的收集。手术后的动车,病人进行多源干扰任务( 图2),旨在激活DACC神经元。试验的足够数量之?…

Discussion

本文SEEG使用期间在人类决策的任务来调查DACC内的局部神经元群体的活性。以前的工作已经利用术microelectode录音14考察单个神经元的活性,在DACC并证明DACC活性通过先前活动调制。微电极研究使单个神经元的扣球活动的调查。 SEEG衡量个LFP,横跨一个人口众多的神经元都与累加突触潜力。因此SEEG允许有机会同时从几个大脑区域的人口进行调查神经元的活动。

当使用的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者没有确认或财务披露。

Materials

Trigger I/O cable Natus Medical Inc. 5029 PS2 to BNC cable
BNC cables for analog pulses Can be ordered from most electronics stores.
Power strip with surge protection and battery backup Tripp Lite SMART500RT1U UPC Power source and backup
National instruments multifunctional daq data acquisition box NI PCIe-6382 DAQ cards National Instruments PCIe-6382 w/ BNC 2090A PCI cards for behavioral control interface
Custom made button box – human interface device Any human interface device with three buttons may be used. Alternatively, 3 keyboard buttons may be used.
Xltek 128 channel clinical intracranial EEG monitoring system EMU128FS Natus Medical Inc. 002047c Clinical recording system
Subject monitor and associated cables for visual stimulus presentation Dell U2212HMc Most Monitors are adequate here.
Personal comptuer running behavioral software with DAQ cards installed Superlogics SL-2U-PD-Q87SLQ-BA Computer for recording neural data
Mains cable for monitor Usually comes with the monitor, can be purchased at any electronics store.
Monkey Logic software which runs on Matlab 2010A Free from MonkeyLogic website
MATLAB 2010a software with data acquisition toolbox Mathworks Matlab software
sEEG electrodes AD TECH or PMT AD TECH 2102-##-101 Platinum tip, diameter (0.89 mm, 1 mm, 1.1 mm), uninsulated length 2.3 mm; The ## in the catalog number indicates the number of contacts on the electrode (08, 10, 12, or 16)
Cabrio connectors PMT 2125-##-01 The ## in the catalog number indicates the number of contacts on the electrode (08, 10, 12, or 16)
Tucker Davis Technologies Amplifier Tucker Davs Technologies PZ5 preamplifier for neural data
Tucker Davis Technologies processor Tucker Davs Technologies RZ2 Neural signal processor for neural data
TuckerDavis Technologies data streamer Tucker Davs Technologies RS4 Data streamer and storage
Fiber optics cables to connect TDT systems Tucker Davs Technologies F05 Fiber optic cables for connecting Tucker Davis Technologies' prodcuts.
ribbon cable and snap serial connector for digital markers Can be ordered from ost electronics stores.
personal computer fro running TDT RPvdsEx and OpenEx software Superlogics SL-2U-PD-Q87SLQ-BA computer for behavioral control
middle atlantics server cabinet with casters Middle Atlantic Products PTRK-21 Server case to house all of the research items
Tucker Davis Technologies splitter box to split clinical and research recrodings Tucker Davs Technologies This splitter box is a semi-custom device. Researchers should consult the attending neurologists about splitting the research and clinical recordings in a way that doesn't interfere with clinical care.
Researcher monitor with requisite cables Dell U2212HMc Most Monitors are adequate here.
button box power source – 5 volts, 2 amperes Can be purchased at any electronics store.
TDT optical interface PCI card Tucker Davs Technologies P05

Riferimenti

  1. Murray, C. J., Lopez, A. D., Jamison, D. T. The global burden of disease in 1990: summary results, sensitivity analysis and future directions. Bulletin of the World Health Organization. 72, 495 (1994).
  2. Berg, A. T. Understanding the delay before epilepsy surgery: who develops intractable focal epilepsy and when. CNS Spectr. 9, 136-144 (2004).
  3. Hauser, W. A. . Epilepsy: frequency, causes and consequences. , (1990).
  4. Wiebe, S., Blume, W. T., Girvin, J. P., Eliasziw, M. A Randomized, Controlled Trial of Surgery for Temporal-Lobe Epilepsy. New England Journal of Medicine. 345, 311-318 (2001).
  5. Fisher, R. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 51, 899-908 (2010).
  6. Zumsteg, D., Wieser, H. G. Presurgical evaluation: current role of invasive EEG. Epilepsia. 41, S55-S60 (2000).
  7. Bouchard, K. E., Mesgarani, N., Johnson, K., Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature. 495, 327-332 (2013).
  8. Zion Golumbic, E. M. Mechanisms underlying selective neuronal tracking of attended speech at a ‘cocktail party’. Neuron. 77, 980-991 (2013).
  9. Mesgarani, N., Chang, E. F. Selective cortical representation of attended speaker in multi-talker speech perception. Nature. 485, 233-236 (2012).
  10. Leuthardt, E. C., Miller, K. J., Schalk, G., Rao, R. P. N., Ojemann, J. G. Electrocorticography-based brain computer Interface-the seattle experience. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 14, 194-198 (2006).
  11. Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., Moran, D. W. A brain-computer interface using electrocorticographic signals in humans. Journal of neural engineering. 1, 63-71 (2004).
  12. Talairach, J. New approach to the neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. 1. Introduction and history. Neurochirurgie. 20, 1-240 (1974).
  13. Gonzalez-Martinez, J. Stereotactic placement of depth electrodes in medically intractable epilepsy. Journal of neurosurgery. 120, 639-644 (2014).
  14. Sheth, S. A. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 488, 218-221 (2012).
  15. Hayden, B. Y., Platt, M. L. Neurons in anterior cingulate cortex multiplex information about reward and action. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30, 3339-3346 (2010).
  16. Hayden, B. Y., Pearson, J. M., Platt, M. L. Fictive Reward Signals in the Anterior Cingulate Cortex. Science. 324, 948-950 (2009).
  17. Williams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R., Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nature neuroscience. 7, 1370-1375 (2004).
  18. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature. 402, 179-181 (1999).
  19. Carter, C. S., Van Veen, V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience. 7, 367-379 (2007).
  20. Botvinick, M. M., Cohen, J. D., Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends in cognitive sciences. 8, 539-546 (2004).
  21. Veen, V., Carter, C. S. The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior. 77, 477-482 (2002).
  22. Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rushworth, M. F. S. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 9, 940-947 (2006).
  23. Brown, J. W., Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science. 307, 1118-1121 (2005).
  24. Bush, G., Shin, L. M., Holmes, J., Rosen, B. R., Vogt, B. A. The Multi-Source Interference Task: validation study with fMRI in individual subjects. Mol Psychiatry. 8, 60-70 (2003).
  25. Bush, G., Shin, L. M. The Multi-Source Interference Task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nature protocols. 1, 308-313 (2006).
  26. Candelaria, L. M., Smith, R. K. Propofol infusion technique for outpatient general anesthesia. J Oral Maxillofac Surg. 53, 124-128 (1995).
  27. Shafer, A., Doze, V. A., Shafer, S. L., White, P. F. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 69, 348-356 (1988).
  28. Cohen, D. S., Lustgarten, J. H., Miller, E., Khandji, A. G., Goodman, R. R. Effects of coregistration of MR to CT images on MR stereotactic accuracy. J Neurosurg. 82, 772-779 (1995).
  29. Ken, S. Quantitative evaluation for brain CT/MRI coregistration based on maximization of mutual information in patients with focal epilepsy investigated with subdural electrodes. Magn Reson Imaging. 25, 883-888 (2007).
  30. Niemann, K., Naujokat, C., Pohl, G., Wollner, C., von Keyserlingk, D. Verification of the Schaltenbrand and Wahren stereotactic atlas. Acta neurochirurgica. 129, 72-81 (1994).
  31. Nowinski, W. L. Anatomical targeting in functional neurosurgery by the simultaneous use of multiple Schaltenbrand-Wahren brain atlas microseries. Stereotact Funct Neurosurg. 71, 103-116 (1998).
  32. Hopper, W. R., Moss, R. Common breaks in sterile technique: clinical perspectives and perioperative implications. AORN J. 91, 350-364 (2010).
  33. Mangram, A. J., Horan, T. C., Pearson, M. L., Silver, L. C., Jarvis, W. R. Guideline for prevention of surgical site infection. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol. 20, 250-278 (1999).
  34. Asaad, W. F., Eskandar, E. N. A flexible software tool for temporally-precise behavioral control in Matlab. Journal of Neuroscience Methods. 174, 245-258 (2008).
  35. Asaad, W. F., Eskandar, E. N. Achieving behavioral control with millisecond resolution in a high-level programming environment. Journal of Neuroscience Methods. 173, 235-240 (2008).
  36. Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., Mitra, P. P. Chronux: A platform for analyzing neural signals. Journal of Neuroscience Methods. 192, 146-151 (2010).
  37. Bokil, P. M. a. H. . Observed Brain Dynamics. , (2008).
  38. Chronux. . , (2014).
  39. Miller, K. J. Broadband Spectral Change: Evidence for a Macroscale Correlate of Population Firing Rate. The Journal of Neuroscience. 30, 6477-6479 (2010).
  40. Buzsáki, G., Anastassiou, C. A., Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 13, 407-420 (2012).
  41. Carter, C. S. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 280, 747-749 (1998).
  42. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature. 402, 179-181 (1999).
  43. Holroyd, C. B., Coles, M. G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological review. 109, 679-709 (2002).
  44. Shenhav, A., Botvinick, M. M., Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 79, 217-240 (2013).
  45. Roesch, M. R., Olson, C. R. Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex. Science. 304, 307-310 (2004).
  46. Croxson, P. L. Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography. The Journal of Neuroscience. 25, 8854-8866 (2005).
  47. Rushworth, M. F. S., Behrens, T. E. J., Rudebeck, P. H., Walton, M. E. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences. 11, 168-176 (2007).
  48. Kawasaki, H. Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat Neurosci. 4, 15-16 (2001).
  49. Wang, S. Neurons in the human amygdala selective for perceived emotion. Proceedings of the National Academy of Sciences. 111, E3110-E3119 (2014).
  50. Milad, M. R., Rauch, S. L. The role of the orbitofrontal cortex in anxiety disorders. Annals of the New York Academy of Sciences. 1121, 546-561 (2007).
  51. Milad, M. R., Rauch, S. L. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 16, 43-51 (2012).
  52. Raichle, M. E. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America. 98, 676-682 (2001).
  53. David, N. Neural representations of self versus other: visual-spatial perspective taking and agency in a virtual ball-tossing game. Journal of cognitive neuroscience. 18, 898-910 (2006).
  54. Kjaer, T. W., Nowak, M., Lou, H. C. Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. NeuroImage. 17, 1080-1086 (2002).
  55. Kircher, T. T. The neural correlates of intentional and incidental self processing. Neuropsychologia. 40, 683-692 (2002).
  56. Addis, D. R., McIntosh, A. R., Moscovitch, M., Crawley, A. P., McAndrews, M. P. Characterizing spatial and temporal features of autobiographical memory retrieval networks: a partial least squares approach. NeuroImage. 23, 1460-1471 (2004).
  57. Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J., Moscovitch, M. Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cerebral cortex (New York, N.Y. : 1991). 14, 1214-1225 (2004).
  58. Cavanna, A. E., Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain: a journal of neurology. 129, 564-583 (2006).
check_url/it/52773?article_type=t

Play Video

Citazione di questo articolo
McGovern, R. A., Ratneswaren, T., Smith, E. H., Russo, J. F., Jongeling, A. C., Bateman, L. M., Schevon, C. A., Feldstein, N. A., McKhann, II, G. M., Sheth, S. Investigating the Function of Deep Cortical and Subcortical Structures Using Stereotactic Electroencephalography: Lessons from the Anterior Cingulate Cortex. J. Vis. Exp. (98), e52773, doi:10.3791/52773 (2015).

View Video