Summary

마우스 차 간세포에서 지방산 산화 및 지방 생성의 결정

Published: August 27, 2015
doi:

Summary

드 노보 지방 생성 및 β – 지방산 산화는 간세포의 주요 대사 경로, 지방간 질환 등 여러 가지 대사 장애에 교란되는 경로를 구성한다. 여기에서 우리는 마우스 차 간세포의 분리를 보여와 β-지방산 산화 및 지방 생성의 정량화를 설명합니다.

Abstract

Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders.

In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via β-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying β-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling.

Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of β-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.

Introduction

Non-alcoholic fatty liver disease is one of the leading causes of liver disease in Westernized cultures1,2. Lipid accumulation within the liver is associated with cell death, fibrosis, and liver failure via yet unknown mechanisms3-6. In fatty liver disease, hepatocyte-mediated β-fatty acid oxidation and de novo lipogenesis are important determinants of net lipid accumulation7,8. This article will, therefore, focus on hepatocyte isolation, followed by quantification of β-fatty acid oxidation and de novo lipogenesis.

Numerous methodologies have been developed to interrogate hepatocyte lipid metabolism. Though it is possible to measure metabolism of fat in vivo using stable isotopes9,10, these methods are costly, and require large numbers of animals. Additionally, the ability to investigate the effect of exogenous chemicals is limited due to the nature of in vivo experimentation. In contrast, the isolation of primary hepatocytes from mouse liver provides an affordable avenue to pursue11. Furthermore, studying hepatocytes in culture allows investigators to study the effects of varying chemicals on lipid processing while circumventing the difficulties of in vivo experimentation. Finally, isolated hepatocytes avoid any confounding from varying genetics since they are derived from the liver of a single animal.

Here we isolate and culture of hepatocytes, and we measure β-fatty acid oxidation and de novo lipogenesis, using radiolabeled palmitate. The protocol detailed below is straight forward, effective, and reproducible.

Protocol

모든 동물 실험은 지역 및 연방 규정에 따라 및 기관 IACUC 및 방사선 안전 관리의 승인을 수행해야한다. 1. 준비 몇 일 전에 분석에, 간 다이제스트 중간 (LDM)의 500㎖의 병을 해동하고 50 ML 원뿔 튜브 ~ 35 mL를 분취을 재 냉동. 필요할 때까지 -20 ℃에서 보관하십시오. 어느 날 이전의 분석에, 오토 클레이브에 의해 깨끗한 해부 도구를 미리 소독. 분석 당일, …

Representative Results

3 × 10 7 총 세포 – 간세포 아이솔레이션는 일반적으로 1을 초래한다. 밤새 배양 한 후, 세포는 (그림 2) 이핵됩니다 많은 육각형를 나타납니다. 건강한 세포는 세포 죽음을 나타내는 있습니다 과립 또는 소포,없는해야한다. 일반적으로, 지방산 산화 분석은 시험 화합물 당 ​​3-4 회 반복 실행됩니다. CO 2 샘플 카운트 산 용해성 물질 유래의 약 1/5이…

Discussion

관류에 희생에서 시간은 이상적인 관류 및 간 콜라게나 소화 미만 3 분이어야합니다. 관류 매체 관류가 시작되면, 간은 즉시 빨간색은 엷은에서에 모양을 변경해야합니다. LDM과 부화의 약 10 분 후, 간은 부어 핑크 나타납니다. 관류이 불충분하다는 경우, 간은 이러한 변화를 나타내지 않으며, 이는 일반적으로 낮은 수율 간세포 초래할 것이다.

세척 단계 후, 절연 간세포 전에…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We would like to acknowledge Susan Gray and Umadevi Chalasani for their help with technical aspects of the hepatocyte isolation protocol. This work was supported by NIDDK grant 5R01DK089185 (to M.P. Cooper) and the DERC Pilot and Feasibility Program at UMMS (to M.P. Cooper).

Materials

Liver Perfusion Medium Life Technologies 17701038
Liver Digest Medium Life Technologies 17703034 Aliquot and store at -20 °C
PBS Corning 21-040-CV
10X DPBS Corning 46-013-CM
DMEM Corning 10-017-CV
FBS Life Technologies 26140079 
Collagen Life Technologies A1048301 
Colloidal silica coated with polyvinylpyrrolidone GE Life Sciences 17-0891-01
Sodium Pyruvate Cellgro 25-000-CI
Penicillin / Streptomycin Cellgro 30-001-CI
Insulin Sigma I0516-5ML
Dexamethasone Sigma D2915-100MG
Albumin (BSA), Fraction V MP Biomedicals 103703
24-Well Culture Dish Corning Falcon 353047 
Tygon S3 Tubing  Cole Parmer 06460-34
Male Leur Lock to 200 Barb Connectors Cole Parmer 45518-00
24G x 3/4" Catheter SurFlo SROX2419CA
Perma-Hand Silk Suture Ethicon 683G
Cell Strainer Corning Falcon 08-771-2
IsoTemp 3013HD Recirculating Water Bath Fisher 13-874-3
MasterFlex C/L Peristaltic Pump MasterFlex HV-77122-24
Microclamp Roboz RS-7438 Pre-sterilize in autoclave
5” Straight, Blunt-Blunt Operating Scissors Roboz RS-6810 Pre-sterilize in autoclave
24mm Blade Straight, Sharp-point Microdissecting Scissors Roboz RS-5912 Pre-sterilize in autoclave
4” 0.8mm Tip Microdissecting Forceps Roboz RS-5130 Pre-sterilize in autoclave
4” 0.8mm Tip Full Curve Microdissecting Forceps Roboz RS-5137 Pre-sterilize in autoclave
60 mL Syringe Becton Dickinson 309653
50 mL conical tubes Corning Falcon 352070
BCA Protein Assay Thermo Scientific 23225
Biosafety Cabinet
CO2 Incubator
Serological pipets
1000, 200, 20 μL pipet and tips

Riferimenti

  1. Clark, J. M., Brancati, F. L., Diehl, A. M. The prevalence and etiology of elevated aminotransferase levels in the United States. The American journal of gastroenterology. 98, 960-967 (2003).
  2. Lazo, M., et al. Prevalence of nonalcoholic Fatty liver disease in the United States: the third national health and nutrition examination survey, 1988-1994. American journal of epidemiology. 178, 38-45 (2013).
  3. Angulo, P. Nonalcoholic fatty liver disease. The New England journal of medicine. 346, 1221-1231 (2002).
  4. Adams, L. A., et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 129, 113-121 (2005).
  5. Feldstein, A. E., et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 125, 437-443 (2003).
  6. Day, C. P., James, O. F. Steatohepatitis: a tale of two ‘hits’. Gastroenterology. 114, 842-845 (1998).
  7. Donnelly, K. L., et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. The Journal of clinical investigation. 115, 1343-1351 (2005).
  8. Lambert, J. E., Ramos-Roman, M. A., Browning, J. D., Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 146, 726-735 (2014).
  9. Parks, E. J., Hellerstein, M. K. Thematic review series: patient-oriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. Journal of lipid research. 47, 1651-1660 (2006).
  10. Befroy, D. E., et al. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nature medicine. 20, 98-102 (2014).
  11. Goncalves, L. A., Vigario, A. M., Penha-Goncalves, C. Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malaria journal. 6, 169 (2007).
check_url/it/52982?article_type=t

Play Video

Citazione di questo articolo
Akie, T. E., Cooper, M. P. Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes. J. Vis. Exp. (102), e52982, doi:10.3791/52982 (2015).

View Video