Summary

工程化血管肌瓣

Published: January 11, 2016
doi:

Summary

To date, thick tissue defects are typically reconstructed by applying autologous tissue flaps or engineered tissues. In this protocol, we present a new method for engineering vascularized tissue flap bearing an autologous pedicle, to serve as a substitute to autologous flaps.

Abstract

One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications.

Introduction

腹壁缺损经常出现以下严重创伤,癌症治疗,烧伤和清除感染的网格。这些缺陷往往涉及显著组织损失,需要复杂的外科手术,并提出一个重大的挑战,重建整形外科医生1-4。组织工程研究人员寻求新的来源为人工组织已经探索不同的材料,细胞来源和生长因子。以前报道进行了各种组织,如气管5,6,膀胱7,角膜8,9和皮肤10,通过工程化组织中植入的成功修复体。然而,一个厚血管工程化组织,制造的尤其是用于重建的大的缺陷,仍然在组织工程一个显著挑战。

一的限制性活组织构建物的厚度的主要因素是氧气供应到其缺点控制tituent细胞。当上扩散依赖,构造厚度限制在一个非常薄的层的。含氧和营养供给毛细管体内之间的最大距离为大约200微米,这与氧气11,12的扩散限制。血管不足可能导致组织缺血,并升级为组织吸收或坏死13。

此外,用于组织重建的理想材料必须是生物相容的和非免疫原性的。它也必须是能够促进与生物材料进一步整合宿主细胞,并维持结构完整性。各种生物14-16和合成1,17,18矩阵先前已经探索了组织重建,但是它们的使用仍然因缺乏有效的血液供应,感染或组织强度不足的限制。

在这项研究中,生物相容的,细胞 – EMBedded脚手架由食品和药物管理局(FDA)批准的聚L-乳酸(PLLA)/聚乳酸 – 共 – 乙醇酸(PLGA)的是围绕裸小鼠的股动脉和静脉(AV)血管植入和从周围组织中分离,从而确保只从该AV血管血管。一周后植入,移植是可行的,厚好血管。这与AV血管粗血管化组织,然后将其转移作为带蒂皮瓣腹部全层缺损相同的鼠标。一周后转移皮瓣是可行的,血管和周围组织很好的集成,承载足够的强度来支持腹腔脏器。因此,改造的厚,血管化组织瓣,轴承自体椎弓根,提出了一种新颖的方法用于修复全层腹壁缺损。

Protocol

所有的动物研究批准了工程技术学院动物实验伦理委员会。对于此过程,无胸腺裸小鼠用于避免免疫排斥反应。如果使用另一种类型的小鼠,小鼠应剃前手术过程和环孢素的施用(或另一种抗排斥替代)的建议。 1.支架制备及细胞嵌入制备的1组成的支架:的聚L-乳酸(PLLA)和聚乳酸 – 共 – 乙醇酸 – 酸共聚物(PLGA)的1:1混合物,以下列方式: 溶解500mg的PLLA的和?…

Representative Results

移植物血管灌注体内 该移植物之前,他们传递的轴型皮瓣植入一个或两个星期。在一周和两周植入后,大体观察接枝区域的揭示可行和血管化组织移植物。这些移植物被证明是高度血管化的,如通过正CD31免疫染色(图1A)来确定,和高度灌注,就证明了FITC-葡聚糖尾静脉注射和超声测量。许多血管已经在一周植入后,这个数字增加一周后在该AV血管附近显?…

Discussion

在组织工程的进展已经达到与替代组织不断增长的需求重建的各种组织类型。各种合成的1,17,18和生物14-16材料以及形成方法进行了评估它们,以解决这些需求的能力。然而,尽管在临床护理和组织工程的进展,全层腹壁缺损恢复仍然是一个挑战。一种组织足以重建如此大规模的缺陷必须为(1)厚和(2)血管,并证明(3)的机械完整性,以及(4)存活力随时间23。

<p cl…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by the FP7 European Research Council Grant 281501, ENGVASC.

Materials

small fine straight scissors Fine Science Tools (FST) 14090-09
spring scissors Fine Science Tools (FST) 15003-08
straight forceps with fine tip Fine Science Tools (FST) 11251-20
serrated forceps  Fine Science Tools (FST) 11050-10
needle holder Fine Science Tools (FST) 12500-12
Small vessel cauterizer  Fine Science Tools (FST) 18000-00
Duratears Alcon 5686
Sedaxylan Euravet DJ03
Clorketam 1000 Vetoquinol 4A0726B
Buprenorphine vetmarket B15100
4-0 silk sutures Assut sutures 647
6-0 polypropylene sutures Assut sutures 9351F
8-0 silk sutures Assut sutures 684568
Insulin syringe (6mm needle) BD 324911
Vevo 2100 high-resolution ultrasound system VisualSonics inc.
MS250 non-linear transducer VisualSonics inc.
Micromarker non-targeted contrast agent VisualSonics inc. VS-11694
tail vein catheter VisualSonics inc. VS-11912
Vevo 2100 software VisualSonics inc.
fluorescein isothiocyanate-conjugated dextran Sigma FD500S
Matlab Mathworks, MA, USA
Kimwipes Kimtech 34120
antigen unmasking solution Vector laboratories H-3300
anti-CD31 antibody Abcam  ab28364
biotinylated goat anti-rabbit (secondary) antibody Vector laboratories BA-1000
streptavidin-peroxidase Jackson  016-030-084
Mayer's hamatoxylin solution Sigma-Aldrich MHS-16
aminoethylcarbazole (AEC) substrate kit Life technologies, Invitrogen  00-2007
Vectamount Vector laboratories H-5501

Riferimenti

  1. Engelsman, A. F., van der Mei, H. C., Ploeg, R. J., Busscher, H. J. The phenomenon of infection with abdominal wall reconstruction. Biomaterials. 28 (14), 2314-2327 (2007).
  2. De Coppi, P., et al. Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. Tissue Eng. 12 (7), 1929-1936 (2006).
  3. Shi, C., et al. Regeneration of full-thickness abdominal wall defects in rats using collagen scaffolds loaded with collagen-binding basic fibroblast growth factor. Biomaterials. 32 (3), 753-759 (2011).
  4. Yezhelyev, M. V., Deigni, O., Losken, A. Management of full-thickness abdominal wall defects following tumor resection. Ann Plast Surg. 69 (2), 186-191 (2012).
  5. Macchiarini, P., Walles, T., Biancosino, C., Mertsching, H. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 128 (4), 638-641 (2004).
  6. Macchiarini, P., et al. Clinical transplantation of a tissue-engineered airway. Lancet. 372 (9665), 2023-2030 (2008).
  7. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  8. Nishida, K., et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 351 (12), 1187-1196 (2004).
  9. Petite, H., et al. Tissue-engineered bone regeneration. Nat Biotechnol. 18 (9), 959-963 (2000).
  10. Banta, M. N., Kirsner, R. S. Modulating diseased skin with tissue engineering: actinic purpura treated with Apligraf. Dermatol Surg. 28 (12), 1103-1106 (2002).
  11. Vunjak-Novakovic, G., et al. Challenges in cardiac tissue engineering. Tissue engineering. Part B, Reviews. 16 (2), 169-187 (2010).
  12. Novosel, E. C., Kleinhans, C., Kluger, P. J. Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews. 63 (4-5), 300-311 (2011).
  13. Lesman, A., Gepstein, L., Levenberg, S. Vascularization shaping the heart. Ann N Y Acad Sci. 1188, 46-51 (2010).
  14. Patton Jr, H., Berry, S., Kralovich, K. A. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. The Am J of Surg. 193 (3), 360-363 (2007).
  15. Menon, N. G., et al. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg. 50 (5), 523-527 (2003).
  16. Buinewicz, B., Rosen, B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 52 (2), 188-194 (2004).
  17. Bringman, S., et al. Hernia repair: the search for ideal meshes. Hernia. 14 (1), 81-87 (2010).
  18. Meintjes, J., Yan, S., Zhou, L., Zheng, S., Zheng, M. Synthetic biological and composite scaffolds for abdominal wall reconstruction. Exp rev of med dev. 8 (2), 275-288 (2011).
  19. Cheng, G., et al. Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood. 118 (17), 4740-4749 (2011).
  20. Shandalov, Y., et al. An engineered muscle flap for reconstruction of large soft tissue defects. PNAS of the USA. 111 (16), 6010-6015 (2014).
  21. Zhang, T. Y., Suen, C. Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27 (3), 236-239 (1984).
  22. Luna, L. G., Luna, L. G. . Manual of Histo Stain Meth ; of the Arm Forcs Inst of Path. , (1968).
  23. Choi, J. H., et al. Adipose tissue engineering for soft tissue regeneration. Tissue engineering. Part B, Reviews. 16 (4), 413-426 (2010).
  24. Bellows, C. F., Alder, A., Helton, W. S. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Exp rev of med dev. 3 (5), 657-675 (2006).
  25. Caspi, O., et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 100 (2), 263-272 (2007).
  26. Kaufman-Francis, K., Koffler, J., Weinberg, N., Dor, Y., Levenberg, S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PloS one. 7 (7), e40741 (2012).
  27. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S. Vascularization–the conduit to viable engineered tissues. Tiss eng. Part B, Reviews. 15 (2), 159-169 (2009).
  28. Koffler, J., et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. PNAS of the USA. 108 (36), 14789-14794 (2011).
  29. Lesman, A., et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tisseng. Part A. 16 (1), 115-125 (2010).
  30. Levenberg, S., et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 23 (7), 879-884 (2005).
  31. Bearzi, C., et al. PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell death & disease. 5, e1053 (2014).
  32. Zhang, M., et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J : official publication of the .Fed Am Soc Exp Biol. 21 (12), 3197-3207 (2007).
  33. Dvir, T., et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. PNAS. 106 (35), 14990-14995 (2009).
  34. Marsano, A., et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 34 (2), 393-401 (2013).
  35. Rufaihah, A. J., et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials. 34 (33), 8195-8202 (2013).
  36. Nillesen, S. T. M., et al. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J of Contr Release. 116 (2), e88-e90 (2006).
  37. Sekine, H., et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 4, 1399 (2013).
  38. Tee, R., et al. Transplantation of engineered cardiac muscle flaps in syngeneic rats. Tiss eng. Part A. (19-20), 1992-1999 (2012).
  39. Morritt, A. N., et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 115 (3), 353-360 (2007).
check_url/it/52984?article_type=t

Play Video

Citazione di questo articolo
Egozi, D., Shandalov, Y., Freiman, A., Rosenfeld, D., Ben-Shimol, D., Levenberg, S. Engineered Vascularized Muscle Flap. J. Vis. Exp. (107), e52984, doi:10.3791/52984 (2016).

View Video