Summary

Lag-på-lag Kollagen Nedfall i mikrofluid Enheter for Microtissue Stabilization

Published: September 29, 2015
doi:

Summary

The creation of functional microtissues within microfluidic devices requires the stabilization of cell phenotypes by adapting traditional cell culture techniques to the limited spatial dimensions in microdevices. Modification of collagen allows the layer-by-layer deposition of ultrathin collagen assemblies that can stabilize primary cells, such as hepatocytes, as microfluidic tissue models.

Abstract

Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.

Introduction

Although microfluidics allows for the exquisite control of the cellular microenvironment, culturing cells, especially primary cells, within microfluidic devices can be challenging. Many traditional cell culture techniques have been developed to sustain and stabilize cell function when cultured in tissue culture plates, but translating those techniques to microfluidic devices is often difficult.

One such technique is the culture of cells on or sandwiched between collagen gels as a model of the physiological 3D cell environment.1 Type I collagen is one of the most frequently used proteins for biomaterials applications because of its ubiquity in extracellular matrix, natural abundance, robust cell attachment sites, and biocompatibility.2 Many cells benefit from 3D culture with collagen, including cancer cells3,45, microvascular endothelial cells6, and hepatocytes7, among others. While the use of collagen gels is easy in open formats, such as tissue culture plates, the limited channel dimensions and enclosed nature of microfluidic devices makes the use of liquids that gel impractical without blocking the entire channel.

To overcome this problem, we combined the layer-by-layer deposition technique8 with chemical modifications of native collagen solutions to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These layers can stabilize cell morphology and function similar to collagen gels and can be deposited on cells in microfluidic devices without blocking the channels with polymerized matrix. The goal of this method is to modify native collagen to create polycationic and polyanionic collagen solutions and to stabilize cells in microfluidic culture by depositing thin collagen matrix assemblies onto the cells. This technique has been used to stabilize the morphology and function of primary hepatocytes in microfluidic devices.9

Although layer-by-layer deposition has previously been reported with natural and synthetic polyelectrolytes10 to cover hepatocytes in plate culture11,12 and as a seeding layer for hepatocytes in microfluidic devices13,14, this method describes the deposition of a pure collagen layer on top of hepatocytes, mimicking the 3D collagen culture techniques. In this protocol, we use hepatocytes as example cells that can be maintained using 3D collagen layers. The many other types of cells that benefit from 3D culture in collagen may similarly benefit from culture after layer-by-layer deposition of an ultrathin collagen matrix assembly.

Protocol

1. Klargjøring av Native Soluble Collagen Solution Forberede eller kjøpe 200 mg av syrnet, løselige, type I kollagen fra rottehaler på 1-3 mg / ml ved hjelp av standard isolerings protokoller, som rapportert av Piez et al. 15 Skalere mengden av utgangsmateriale basert på det ønskede sluttvolum av modifiserte kollagenløsninger. Omtrent gjør 25-30 ml metylert og 25-30 ml succinylated kollagenløsninger, hver på 3 mg / ml, fra 200 mg til løselig naturlig kollagen. </o…

Representative Results

Native kollagen kan modifiseres ved hjelp av metylering og Succinylering å skape polykationiske og polyanioniske kollagenløsninger for anvendelse ved lag-på-lag avsetning. Succinylering endrer c-aminogruppene i naturlig kollagen med succinyl-grupper, og metylering modifiserer karboksylgruppene naturlig kollagen med en metylgruppe (figur 1A). Disse modifikasjoner av collagen protein aminosyre sidekjeder forandre pH titreringskurver for løsningene. Succinylering reduserer antall aminogrupper og øker …

Discussion

Ultratynne rent kollagen sammenstillinger kan avsettes på ladede celler eller materialoverflater ved hjelp av lag-på-lag avsetning av modifiserte bindevevet. Resultatene av denne studien viser at metylering og Succinylering av nativt kollagen skape polykationiske og polyanioniske kollagenløsninger (figur 1) som kan brukes sammen med lag-på-lag teknikk for å avsette ultratynne kollagen matrisesammenstillinger på celler (figur 2) eller en annen belastet materialoverflater. Slike ult…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the National Institutes of Health, including a microphysiological systems consortium grant from the National Center for Advancing Translational Sciences (UH2TR000503), a Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowship (F32DK098905 for WJM) and pathway to independence award (DK095984 for AB) from the National Institute of Diabetes and Digestive and Kidney Diseases.

Materials

collagen type I, rat tail Life Technologies A1048301 option for concentrated rat tail collagen
collagen type I, rat tail Sigma-Aldrich C3867-1VL option for concentrated rat tail collagen
collagen type I, rat tail EMD Millipore 08-115 option for concentrated rat tail collagen
collagen type I, rat tail R%D Systems 3440-100-01 option for concentrated rat tail collagen
succinic anhydride Sigma-Aldrich 239690-50G succinylation reagent
anhydrous methanol Sigma-Aldrich 322415-100ML methylation reagent
sodium hydroxide Sigma-Aldrich S5881-500G pH precipitation reagent
hydrochloric acid Sigma-Aldrich 320331-500ML pH precipitation reagent
rat collagen type I ELISA Chondrex 6013 option for detecting collagen content
hydroxyproline assay kit Sigma-Aldrich MAK008-1KT option for detecting collagen content
hydroxyproline assay kit Quickzyme Biosciences QZBtotcol1 option for detecting collagen content

Riferimenti

  1. Pedersen, J. A., Swartz, M. A. Mechanobiology in the third dimension. Ann Biomed Eng. 33 (11), 1469-1490 (2005).
  2. Glowacki, J., Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers. 89 (5), 338-344 (2008).
  3. Vescio, R. A., et al. In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture. PNAS. 84, 5029-5033 (1987).
  4. Chandrasekaran, S., Guo, N. -. h., Rodrigues, R. G., Kaiser, J., Roberts, D. D. Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by α3β1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem. 274 (16), 11408-11416 (1999).
  5. Chen, S. S., et al. Multilineage differentiation of rhesus monkey embryonic stem cells in three‐dimensional culture systems. Stem Cells. 21 (3), 281-295 (2003).
  6. Whelan, M. C., Senger, D. R. Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem. 278 (1), 327-334 (2003).
  7. Dunn, J. C., Tompkins, R. G., Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog. 7 (3), 237-245 (1991).
  8. Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 277, 1232-1237 (1997).
  9. McCarty, W. J., et al. A novel ultrathin collagen nanolayer assembly for 3-D microtissue engineering: Layer-by-layer collagen deposition for long-term stable microfluidic hepatocyte culture. TECHNOLOGY. 2 (01), 67-74 (2014).
  10. Swierczewska, M., et al. Cellular response to nanoscale elastin-like polypeptide polyelectrolyte multilayers. Acta Biomater. 4 (4), 827-837 (2008).
  11. Kim, Y., Larkin, A. L., Davis, R. M., Rajagopalan, P. The design of in vitro liver sinusoid mimics using chitosan-hyaluronic acid polyelectrolyte multilayers. Tissue Eng Pt A. 16 (9), 2731-2741 (2010).
  12. Larkin, A. L., Rodrigues, R. R., Murali, T., Rajagopalan, P. Designing a Multicellular Organotypic 3D Liver Model with a Detachable, Nanoscale Polymeric Space of Disse. Tissue Eng Pt C. 19 (11), 875-884 (2013).
  13. Kidambi, S., et al. Patterned Co‐Culture of Primary Hepatocytes and Fibroblasts Using Polyelectrolyte Multilayer Templates. Macromol Biosci. 7 (3), 344-353 (2007).
  14. Janorkar, A. V., Rajagopalan, P., Yarmush, M. L., Megeed, Z. The use of elastin-like polypeptide-polyelectrolyte complexes to control hepatocyte morphology and function in vitro. Biomaterials. 29 (6), 625-632 (2008).
  15. Piez, K. A., Eigner, E. A., Lewis, M. S. The Chromatographic Separation and Amino Acid Composition of the Subunits of Several Collagens*. Biochimica. 2 (1), 58-66 (1963).
  16. Tanford, C. The interpretation of hydrogen ion titration curves of proteins. Adv Protein Chem. 17, 69-165 (1962).
  17. Cayot, P., Tainturier, G. The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination. Anal Biochem. 249 (2), 184-200 (1997).
  18. Kakade, M. L., Liener, I. E. Determination of available lysine in proteins. Anal Biochem. 27 (2), 273-280 (1969).
  19. Seglen, P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 13, 29-83 (1976).
check_url/it/53078?article_type=t

Play Video

Citazione di questo articolo
McCarty, W. J., Prodanov, L., Bale, S. S., Bhushan, A., Jindal, R., Yarmush, M. L., Usta, O. B. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization. J. Vis. Exp. (103), e53078, doi:10.3791/53078 (2015).

View Video