Summary

可见光诱导的还原氧化石墨烯的使用电浆纳米粒子

Published: September 22, 2015
doi:

Summary

一个简单的协议,用于石墨烯氧化物减少使用可见光和电浆纳米粒子的制备描述。

Abstract

目前的工作证明了简单,无化学,快速,高效节能利用可见光照射电浆纳米颗粒在室温下制造减少了石墨烯氧化物(R-GO)溶液方法。电浆纳米颗粒用于改进GO为还原效率。只需要30分钟,在RT下通过照射用氙灯的解决方案中,R-GO的解决方案可以通过简单的离心步骤完全除去金纳米颗粒而获得。球形金粒子(AuNPs)相比于其它纳米结构是最合适的电浆纳米结构物的R-GO制剂。所述还原的石墨烯氧化物制备使用可见光和金纳米粒子同样定性化学还原的石墨烯氧化物,其通过诸如UV-Vis光谱,拉曼光谱,粉末XRD和XPS各种分析技术的支持。制备的可见光减少的氧化石墨烯显示在氟优良的淬特性修改后的单链DNA和优良的荧光恢复的目标DNA检测escent分子。制备纳米金回收The-Go的r被认为是相同的质量与化学还原R-GO的。与电浆纳米粒子的使用可见光演示了R-GO合成好的替代方法。

Introduction

第一开发苏格兰胶带基于方法1和化学气相沉积2分别以产生石墨烯的原始状态优良的方法,但与广域表面上的大型的石墨烯合成或石墨烯层的形成已被视为一个关键限制以前的方法。对于大规模的r-GO合成将湿化学合成的方法,该方法首先需要与强氧化剂,广泛物理处理如超声处理的反应,以产生GO片,和氧功能,例如最后的减少可能的解决方案3的一个如羟基,环氧基和羰基在GO是为了恢复其原有的物理性能是必不可少的。4晴,GO为还原,进行与使用的肼或其衍生物5或通过热处理方法或者化学方法(550-1,100° C)在惰性气氛或还原气氛。6

jove_content“>这些方法需要有毒的化学物质,反应时间长,高温而增加了的r-GO合成总的能源需求。7虽然光照射还原过程,如紫外线引起,8光热过程使用脉冲氙闪光,9脉冲激光辅助10和光热相机闪光灯11也有报道用于制备加热的r-GO,在通常情况下,光诱导方法转换效率低传播到利用紫外线或脉冲的激光照射,可提供高光子能量。可见光的低光子能量限制了它的使用,而不是引起了对于R-GO合成。电​​浆纳米颗粒的优异的光吸收特性中的可见和/或近红外区域可以大大改善目前的缺点12,13温和的反应条件,反应时间短,限制使用有毒通道的使用可见光为R-GO合成。emicals可以使可见光诱导等离子体辅助光催化还原GO作为一种有用的替代方法。

在本方法中,我们使用电浆纳米粒子和可见光描述了高效和简单的R-GO合成方法。反应进程被发现是强烈地依赖于电浆纳米颗粒的结构,例如球形金粒子(AuNPs),金纳米棒(AuNRs)和金纳米星(AuNSs)。使用金纳米粒子表现出最有效的减少的GO和纳米颗粒是易于拆卸和可循环用于重复使用( 图1)。在R-GO使用可见光合成金纳米粒子表现出几乎相同的品质与相比R-GO准备知名化学法(肼)就证明了利用各种分析测量和荧光猝灭/恢复基于DNA的检测方法。

Protocol

1.准备前兆制备氧化石墨烯(GO)的: GO准备采用改良悍马的方法14 添加3.0的克石墨片到浓缩的 H 2的混合物中的SO 4 / H 3 PO 4(360:40毫升)中于RT。 (注:特别注意有同时使用强酸H 2 SO 4和H 3 PO 4上当。) 加入高锰酸钾 (18.0克)在搅拌下缓慢冷却,在冰浴中以维持反应混合物在<35℃的温度。 (…

Representative Results

图1示出了用于可见光和电浆纳米颗粒基的r-GO还原反应的总体方案。 图2示出了仪器设置的新的反应。反应后,需要离心步骤以除去所用的光催化剂(AuNSs,AuNRs,或金纳米粒子),如图3A所示。高分辨的分析表明,在上清液(R-GO)(图3B),这也是可能的,以确认,用紫外-可见分析,如图3C所示,吸收带从第…

Discussion

可见光照射到30分钟与金粒子(AuNPs,AuNSs&AuNRs)GO溶液显示从浅黄棕色至黑的颜色( 图1)的快速颜色变化。为了获得高纯度的R-GO产品的高收益,有两个重要的因素需要遵循。一种是使用金纳米粒子作为有效的等离子体激元催化剂,因为金纳米粒子可以强烈地吸收其它结构即,AuNRs,AuNSs)之间的可见光。另一种是利用纳米GO解决方案,以获得纳米颗粒无高纯度的R-GO产品。所…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作是由韩国(2013R1A1A1061387)国家研究基金会和KU-KIST的研究基金的支持。

Materials

Cy3 modifeid ssDNA IDT(Iowa, USA) HPLC purified by IDT
Gold nanoparticles (30 nm) Ted Pella, Inc(Redding, CA, USA). 15706-20 colloidal solution
4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid (HEPES) (99.5%) Sigma-Aldrich (St. Louis, MO, USA) 7365-45-9
Gold(III)Chloride Hydrate (99.999%) Sigma-Aldrich (St. Louis, MO, USA)  27988-77-8 strongly hygroscopic
Sodium Borohydride (99.99%) Sigma-Aldrich (St. Louis, MO, USA) 16940-66-2
Hexadecyltrimethylammonium bromide (≥99%) Sigma-Aldrich (St. Louis, MO, USA) 57-09-0
L-Ascorbic Acid(≥99.0%) Sigma-Aldrich (St. Louis, MO, USA) 50-81-7
Sodium Chloride (99.5%) Sigma-Aldrich (St. Louis, MO, USA) 7647-14-5
Silver Nitrate  (≥99.0%) Sigma-Aldrich (St. Louis, MO, USA) 7761-88-8
Graphite Sigma-Aldrich (St. Louis, MO, USA) 7782-42-5
Sulfuric acid Sigma-Aldrich (St. Louis, MO, USA) 7664-93-9
Phophoric acid Sigma-Aldrich (St. Louis, MO, USA) 7664-38-2
Potassium permanganate Sigma-Aldrich (St. Louis, MO, USA) 7722-64-7
Hydrogen peroxide JUNSEI 23150-0350
Ammonium hydroxide Sigma-Aldrich (St. Louis, MO, USA) 1336-21-6
Xe-lamp  Cermax, Waltham, USA
NIR Laser Class-IV, Sanctity Laser, Shanghai, China  6W (output power)
UV-Vis spectrophotometer  S-3100, SINCO, South Korea
Transmission Electron Microscopy H-7650, Hitachi, Japan
Spectro Fluorometer Jasco FP-6500, Tokyo, Japan
X-ray Photoelectron Spectrometer AXIS–NOVA, KRATOS Inc., UK

Riferimenti

  1. Novoselov, K. S., et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 306 (5696), 666-669 (2004).
  2. Obraztsov, A. N. Chemical Vapour Deposition Making Graphene on a Large Scale. Nat Nanotechnol. 4 (4), 212-213 (2009).
  3. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y. S. Synthesis of Graphene and Its Applications A Review. Crit Rev Solid State Mater Sci. 35 (1), 52-71 (2010).
  4. Zhou, Y., et al. Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Adv Mater. 22 (1), 67-71 (2010).
  5. Stankovich, S., et al. Graphene Based Composite Materials. Nature. 442 (7100), 282-286 (2006).
  6. Becerril, H. A., et al. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano. 2 (3), 463-470 (2008).
  7. Wang, X., Zhi, L., Müllen, K. Transparent Conductive Graphene Electrodes for Dye Sensitized Solar Cells. Nano Lett. 8 (1), 323-327 (2007).
  8. Sungjin, P., Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat Nanotechnol. 4 (4), 217-224 (2009).
  9. Akhavan, O., Ghaderi, E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation. J Phys Chem C. 113 (47), 20214-20220 (2009).
  10. Huang, L., et al. Pulsed Laser Assisted Reduction of Graphene Oxide. Carbon. 49 (7), 2431-2436 (2011).
  11. Cote, L. J., Cruz-Silva, R., Huang, J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer. Composite. J. Am. Chem. Soc. 131 (31), 11027-11032 (2009).
  12. Wu, T., et al. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: Using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale. 3 (5), 2142-2144 (2011).
  13. Kumar, D., Kaur, S., Lim, D. K., et al. Plasmon-assisted and visible-light induced graphene oxide reduction and efficient fluorescence quenching. Chem. Commun. 50 (88), 13481-13484 (2014).
  14. Gilje, S., et al. Photothermal Deoxygenation of Graphene Oxide for Patterning and Distributed Ignition Applications. Adv. Mater. 22 (3), 419-423 (2010).
  15. Cote, L. J., Kim, F., Huang, J. Langmuir−Blodgett Assembly of Graphite Oxide Single Layers. J. Am. Chem. Soc. 131 (3), 1043-1049 (2008).
  16. Ming, T., et al. Experimental Evidence of Plasmophores: Plasmon-Directed Polarized Emission from Gold Nanorod–Fluorophore Hybrid Nanostructures. Nano Lett. 11 (6), 2296-2303 (2011).
  17. Xie, J., Lee, J. Y., Seedless Wang, D. I. C. Surfactantless, High-Yield Synthesis of Branched Gold Nanocrystals in HEPES Buffer Solution. Chem. Mater. 19 (11), 2823-2830 (2007).
  18. Ferrari, A. C., Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B. 64 (7), 075414-1-075414-13 (2000).
  19. Tian, J., et al. One–pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod–decorated reduced graphene oxide composites and their application in photocurrent generation. Catal. Sci. Technol. 2 (11), 2227-2230 (2012).
  20. Liu, S., Tian, J., Wang, L., Sun, X. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. CARBON. 49 (10), 3158-3164 (2011).
  21. Tian, J., et al. Environmentally Friendly, One–Pot Synthesis of Ag Nanoparticle Decorated Reduced Graphene Oxide Composites and Their Application to Photocurrent Generation. Inorg. Chem. 51 (8), 4742-4746 (2012).
  22. Tian, J., et al. Three–Dimensional Porous Supramolecular Architecture from Ultrathin gC3N4 Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal–Free Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces. 6 (2), 1011-1017 (2014).
  23. Liu, S., et al. Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection. Macromolecules. 43 (23), 10078-10083 (2010).
  24. Li, H., et al. Photocatalytic synthesis of highly dispersed Pd nanoparticles on reduced graphene oxide and their application in methanol electro–oxidation. Catal. Sci. Technol. 2 (6), 1153-1156 (2012).
check_url/it/53108?article_type=t

Play Video

Citazione di questo articolo
Kumar, D., Lee, A., Kaur, S., Lim, D. Visible-light Induced Reduction of Graphene Oxide Using Plasmonic Nanoparticle. J. Vis. Exp. (103), e53108, doi:10.3791/53108 (2015).

View Video