Summary

MR-guided dmPFC-rTMS som en behandling for behandling-resistent depression

Published: August 11, 2015
doi:

Summary

Here we outline the procedure for MRI-guided repetitive transcranial magnetic stimulation to the dorsomedial prefrontal cortex as an experimental treatment for major depressive disorder.

Abstract

Here we outline the protocol for magnetic resonance imaging (MRI) guided repetitive transcranial magnetic stimulation (rTMS) to the dorsal medial prefrontal cortex (dmPFC) in patients with major depressive disorder (MDD). Technicians used a neuronavigation system to process patient MRIs to generate a 3-dimensional head model. The head model was subsequently used to identify patient-specific stimulatory targets. The dmPFC was stimulated daily for 20 sessions. Stimulation intensity was titrated to address scalp pain associated with rTMS. Weekly assessments were conducted on the patients using the Hamilton Rating Scale for Depression (HamD17) and Beck Depression Index II (BDI-II). Treatment-resistant MDD patients achieved significant improvements on both HAMD and BDI-II. Of note, angled, double-cone coil rTMS at 120% resting motor threshold allows for optimal stimulation of deeper midline prefrontal regions, which results in a possible therapeutic application for MDD. One major limitation of the rTMS field is the heterogeneity of treatment parameters across studies, including duty cycle, number of pulses per session and intensity. Further work should be done to clarify the effect of stimulation parameters on outcome. Future dmPFC-rTMS work should include sham-controlled studies to confirm its clinical efficacy in MDD.

Introduction

Gentagne transkraniel magnetisk stimulation (rTMS) er en form for indirekte omdrejningspunkt kortikal stimulation. rTMS beskæftiger korte, fokale elektromagnetiske felt pulser som trænger kraniet for at stimulere target hjerneområder. rTMS menes at engagere mekanismerne i synaptisk langtidspotensering og langsigtet depression, og derved øge eller sænke den kortikale ophidselse af regionen stimuleret 1. Generelt er rTMS pulsfrekvensen bestemmer dens virkninger: højere frekvens stimulation tendens til at være excitatorisk, mens lavere frekvens er inhiberende. Ikke-invasive stimulerende procedurer også meget anvendt som en kausal sonde til at fremkalde midlertidige 'kortikale læsioner «, og etablere neurale-adfærd relationer eller funktionelle regioner ved midlertidigt at deaktivere funktionen af et ønsket kortikale region 2 – 4.

Terapeutisk rTMS omfatter flere stimulation sessioner, der normalt anvendes, når daily over flere uger, til behandling af en række lidelser, herunder depression (MDD) 5, spiseforstyrrelser 6 og obsessiv-kompulsiv sygdom 7. rTMS for MDD er en potentiel mulighed for medicinsk refraktære patienter, og gør det muligt for klinikeren at ikke-invasivt målrette og ændre ophidselse af en cortical området direkte involveret med depressive ætiologi eller patofysiologi. Den konventionelle kortikale mål for MDD-rTMS er dorsolaterale præfrontale cortex (DLPFC) 8. Men konvergerende beviser fra neuroimaging, læsion, og stimulation undersøgelser identificerer dorsomedial præfrontale cortex (dmPFC) som en potentielt vigtig terapeutisk mål for MDD 9 og en række andre psykiatriske lidelser kendetegnet ved underskud i selvregulering af tanker, adfærd og følelsesmæssige hedder 10. Den dmPFC er en region i sammenhængende aktivering i følelsesmæssig regel 11, adfærdsregulering 12,13. DendmPFC er også forbundet med neurokemiske 14, strukturel 15, og funktionelle 16 abnormiteter i MDD

Beskrevet her er proceduren for 20 sessioner (4 uger) af magnetisk resonans imaging (MRI) guidede rTMS til dmPFC bilateralt, som en behandling for depression. Ud over en konventionel 10 Hz protokol anvendes over 30 min, er en intermitterende theta burst stimuleringsprotokol (TBS) diskuteret, som gælder 50 Hz triplet strømstød ved 5 Hz over 6 min session 17. Begge protokoller menes at være excitatoriske, med TBS-protokollen, der har potentiale til at opnå sammenlignelige effekter ved hjælp af en meget kortere session 18. I begge protokoller er anatomiske MRIs samt kliniske vurderinger erhvervet før rTMS. Neuronavigation anvender de anatomiske scanninger for at redegøre for anatomiske variabilitet dmPFC og optimere placeringen af ​​rTMS. En forholdsvis ny 120 ° -overvågningsmønster væske-kølet rTMS coil var også osed for at stimulere dybere midterlinjen kortikale strukturer. Endelig blev rTMS intensitet titrering anvendes i den første uge af rTMS sessioner for at sikre, at patienterne kunne vænne til de højere smerte der er forbundet med dmPFC stimulering sammenlignet med konventionelle DLPFC stimulering.

Protocol

Denne undersøgelse blev godkendt af Research Ethics Board ved University Health Network. 1. Med forbehold Selection Foretage en indledende vurdering af en potentiel patient. Inklusionskriterierne omfattede tilstedeværelsen af ​​en aktuel depressiv episode, der er resistent over for mindst 1 tilstrækkelig forsøg med medicin, og en Diagnostiske og Statistiske håndbog for psykiske forstyrrelser, femte udgave, (DSM-5) diagnosticering af MDD som fastsat af en vurdering psykiat…

Representative Results

I tidligere arbejde blev Hamd 17 anvendt som et mål for behandling respons for 10 Hz dmPFC-rTMS. Tabel 1 viser de før og efter behandling hamd 17 scorer i en tidligere offentliggjort sag serie 27. Blandt alle fag, forbehandling hamd 17 score var 21.66.9 der væsentligt faldt med 4331% til 12.58.2 post-rTMS (t 22 = 6,54, p <0,0001) 27. Ved hjælp af en eftergivelse kriterium Hamd 17 ≤7, 8 af 23 forsøgspersoner hjemvist e…

Discussion

Her blev MRI-guidede dmPFC-rTMS anvendes til behandling-resistent depression. Generelt blev rTMS på dette websted veltolereret, med mild hovedbund ubehag og smerter på det sted, stimulering, der var tilstrækkeligt styres ved hjælp af adaptiv titrering. I open-label forsøg og et diagram gennemgang, både 10 Hz og theta brast stimulation resulterede i signifikante forbedringer i depressive sværhedsgrad målt ved Hamd 17 og BDI-II.

Der er to kritiske trin værd at bemærke i pr…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Aisha Dar, Vanathy Niranjan, and Dr. Umar Dar for technical assistance with rTMS delivery and data collection. The authors also wish to acknowledge the generous support of the Toronto General and Western Hospital Foundation, the Buchan Family Foundation, and the Ontario Brain Institute in funding this work.

Materials

3T GE Signa HDx Scanner GE n/a
Visor 2.0 Neuronavigation System ANT Neuro n/a
MagPro R30 Stimulator MagVenture n/a
Cool-DB80 Coil MagVenture n/a

Riferimenti

  1. Fitzgerald, P. B., Fountain, S., Daskalakis, Z. J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology. 117, 2584-2596 (2006).
  2. Pascual-Leone, A., Gates, J. R., Dhuna, A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 41, 697-702 (1991).
  3. Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., Saxe, R. Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America. 107, 6753-6758 (2010).
  4. Hilgetag, C. C., Théoret, H., Pascual-Leone, A. Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Nature neuroscience. 4, 953-957 (2001).
  5. Berman, R. M., et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. Biological psychiatry. 47, 332-337 (2000).
  6. Van den Eynde, F., et al. Repetitive transcranial magnetic stimulation reduces cue-induced food craving in bulimic disorders. Biological psychiatry. 67 (8), 793-795 (2010).
  7. Berlim, M. T., Neufeld, N. H., Vanden Eynde, F. Repetitive transcranial magnetic stimulation (rTMS) for obsessive-compulsive disorder (OCD): an exploratory meta-analysis of randomized and sham-controlled trials. Journal of psychiatric research. 47 (8), 999-1006 (2013).
  8. Fitzgerald, P. B., et al. A randomized trial of unilateral and bilateral prefrontal cortex transcranial magnetic stimulation in treatment-resistant major depression. Psychological Medicine. 41, 1187-1196 (2011).
  9. Downar, J., Daskalakis, Z. J. New targets for rTMS in depression: A review of convergent evidence. Brain Stimulation. 6, 231-240 (2013).
  10. Downar, J., Sankar, A., Giacobbe, P., Woodside, B., Colton, P. Unanticipated Rapid Remission of Refractory Bulimia Nervosa, during High-Dose Repetitive Transcranial Magnetic Stimulation of the Dorsomedial Prefrontal Cortex: A Case Report. Frontiers in psychiatry. 3 (30), 1-5 (2012).
  11. Gallinat, J., Brass, M. Keep Calm and Carry On”: Structural Correlates of expressive suppression of emotions. PLoS ONE. 6, e1-e4 (2011).
  12. Langner, R., Cieslik, E. C., Rottschy, C., Eickhoff, S. B. Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity. Brain structure, & function. , (2014).
  13. Jung, Y. -. C., et al. Synchrony of anterior cingulate cortex and insular-striatal activation predicts ambiguity aversion in individuals with low impulsivity. Cerebral cortex. 24 (5), 1397-1408 (2014).
  14. Auer, D. P., Pütz, B., Kraft, E., Lipinski, B., Schill, J., Holsboer, F. Reduced glutamate in the anterior cingulate cortex in depression: An in vivo proton magnetic resonance spectroscopy study. Biological Psychiatry. 47, 305-313 (2000).
  15. Bora, E., Fornito, A., Pantelis, C., Yucel, M. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry research. 211 (1), 37-46 (2013).
  16. Sheline, Y. I., Price, J. L., Yan, Z., Mintun, M. A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America. 107, 11020-11025 (2010).
  17. Huang, Y. -. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron. 45, 201-206 (2005).
  18. Bakker, N., et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimulation. In Press, 1-22 (2014).
  19. Talairach, J., Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Neuropsychologia. 39, 145 (1988).
  20. Terao, Y., et al. A single motor unit recording technique for studying the differential activation of corticospinal volleys by transcranial magnetic stimulation. Brain Research Protocols. 7, 61-67 (2001).
  21. Schutter, D. J. L. G., van Honk, J. A standardized motor threshold estimation procedure for transcranial magnetic stimulation research. The journal of ECT. 22, 176-178 (2006).
  22. Downar, J., Geraci, J., et al. Anhedonia and Reward-Circuit Connectivity Distinguish Nonresponders from Responders to Dorsomedial Prefrontal Repetitive Transcranial Magnetic Stimulation in Major Depression. Biological psychiatry. , 1-26 (2013).
  23. Downar, J., Geraci, J., et al. Anhedonia and Reward-Circuit Connectivity Distinguish Nonresponders from Responders to Dorsomedial Prefrontal Repetitive Transcranial Magnetic Stimulation in Major Depression. Biological Psychiatry. 76 (3), 176-185 (2014).
  24. Beck, A. T., Steer, R. A., Brown, G. K. . Manual for the Beck depression inventory-II. , 1-82 (1996).
  25. Beck, A. T., Epstein, N., Brown, G., Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. Journal of consulting and clinical psychology. 56, 893-897 (1988).
  26. Hamilton, M. C. Hamilton Depression Rating Scale (HAM-D). REDLOC. 23, 56-62 (1960).
  27. Salomons, T. V., et al. Resting-State Cortico-Thalamic-Striatal Connectivity Predicts Response to Dorsomedial Prefrontal rTMS in Major Depressive Disorder. Neuropsychopharmacology official publication of the American College of Neuropsychopharmacology. 39, 488-498 (2014).
  28. Hayward, G., et al. Exploring the physiological effects of double-cone coil TMS over the medial frontal cortex on the anterior cingulate cortex: an H2(15)O PET study. The European journal of neuroscience. 25, 2224-2233 (2007).
  29. Vanneste, S., Ost, J., Langguth, B., De Ridder, D. TMS by double-cone coil prefrontal stimulation for medication resistant chronic depression: a case report. Neurocase. 20 (1), 61-68 (2014).
  30. Mueller, S., et al. Individual Variability in Functional Connectivity Architecture of the Human Brain. Neuron. 77, 586-595 (2013).
  31. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry. 72, 595-603 (2012).
  32. Fox, M. D., Liu, H., Pascual-Leone, A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage. 66, 151-160 (2013).
  33. Kedzior, K., Azorina, V., Reitz, S. More female patients and fewer stimuli per session are associated with the short-term antidepressant properties of repetitive transcranial magnetic stimulation (rTMS): a meta-analysis of 54 sham-controlled studies published between 1997-2013. Neuropsychiatric disease and treatment. 10, 727-756 (2014).
  34. Lee, J. C., Blumberger, D. M., Fitzgerald, P. B., Daskalakis, Z. J., Levinson, A. J. The Role of Transcranial Magnetic Stimulation in Treatment-Resistant Depression: A Review. Current Pharmaceutical Design. 18, 5846-5852 (2012).
  35. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., Pascual-Leone, A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Experimental Brain Research. 133, 425-430 (2000).
  36. Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., Priori, A. Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Progress in neuro-psychopharmacology, & biological psychiatry. 39, 9-16 (2012).
  37. Mantovani, A., Simpson, H. B., Fallon, B. A., Rossi, S., Lisanby, S. H. Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP. 13, 217-227 (2010).
  38. Watts, B. V., Landon, B., Groft, A., Young-Xu, Y. A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder). Brain Stimulation. 5, 38-43 (2012).
  39. Berlim, M. T., Broadbent, H. J., Van den Eynde, F. Blinding integrity in randomized sham-controlled trials of repetitive transcranial magnetic stimulation for major depression: a systematic review and meta-analysis. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). 16, 1173-1181 (2013).
  40. Brunoni, A. R., Lopes, M., Kaptchuk, T. J., Fregni, F. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis. PLoS One. 4, e4824 (2009).
  41. Chistyakov, A. V., Rubicsek, O., Kaplan, B., Zaaroor, M., Klein, E. Safety tolerability and preliminary evidence for antidepressant efficacy of theta-burst transcranial magnetic stimulation in patients with major depression. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). 13, 387-393 (2010).
  42. Iyer, M. B., Schleper, N., Wassermann, E. M. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation). The Journal of neuroscience the official journal of the Society for Neuroscience. 23, 10867-10872 (2003).
  43. Vedeniapin, A., Cheng, L., George, M. S. Feasibility of simultaneous cognitive behavioral therapy and left prefrontal RTMS for treatment resistant depression. Brain Stimulation. 3, 207-210 (2010).
  44. Rumi, D. O., et al. Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: A double-blind placebo-controlled study. Biological Psychiatry. 57, 162-166 (2005).
  45. Platz, T., Rothwell, J. C. Brain stimulation and brain repair–rTMS: from animal experiment to clinical trials–what do we know. Restorative neurology and neuroscience. 28, 387-398 (2010).
check_url/it/53129?article_type=t

Play Video

Citazione di questo articolo
Dunlop, K., Gaprielian, P., Blumberger, D., Daskalakis, Z. J., Kennedy, S. H., Giacobbe, P., Downar, J. MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder. J. Vis. Exp. (102), e53129, doi:10.3791/53129 (2015).

View Video