Summary

与FRET流式细胞仪灵敏地检测Proteopathic播种活动

Published: December 08, 2015
doi:

Summary

Cell-to-cell transfer of protein aggregates, or proteopathic seeds, may underlie the progression of pathology in neurodegenerative diseases. Here, a novel FRET flow cytometry assay is described that enables specific and sensitive detection of seeding activity from recombinant or biological samples.

Abstract

Increasing evidence supports transcellular propagation of toxic protein aggregates, or proteopathic seeds, as a mechanism for the initiation and progression of pathology in several neurodegenerative diseases, including Alzheimer’s disease and the related tauopathies. The potentially critical role of tau seeds in disease progression strongly supports the need for a sensitive assay that readily detects seeding activity in biological samples.

By combining the specificity of fluorescence resonance energy transfer (FRET), the sensitivity of flow cytometry, and the stability of a monoclonal cell line, an ultra-sensitive seeding assay has been engineered and is compatible with seed detection from recombinant or biological samples, including human and mouse brain homogenates. The assay employs monoclonal HEK 293T cells that stably express the aggregation-prone repeat domain (RD) of tau harboring the disease-associated P301S mutation fused to either CFP or YFP, which produce a FRET signal upon protein aggregation. The uptake of proteopathic tau seeds (but not other proteins) into the biosensor cells stimulates aggregation of RD-CFP and RD-YFP, and flow cytometry sensitively and quantitatively monitors this aggregation-induced FRET. The assay detects femtomolar concentrations (monomer equivalent) of recombinant tau seeds, has a dynamic range spanning three orders of magnitude, and is compatible with brain homogenates from tauopathy transgenic mice and human tauopathy subjects. With slight modifications, the assay can also detect seeding activity of other proteopathic seeds, such as α-synuclein, and is also compatible with primary neuronal cultures. The ease, sensitivity, and broad applicability of FRET flow cytometry makes it useful to study a wide range of protein aggregation disorders.

Introduction

细胞内的tau淀粉样蛋白的积累定义τ病变如阿尔茨海默氏病。在早期疾病阶段,病理通常定位于大脑的离散区域,但随着疾病进展,病理学总是沿不同的神经网络1-5传播。越来越多的证据表明,有毒蛋白聚集体跨细胞繁殖underlies此病理(6-10综述)。在这个模型中,proteopathic种子例如,tau蛋白)释放从供体细胞,并进入邻近细胞,转化天然tau蛋白成经由模板化的构象变化11-15错误折叠形式。此处所描述的测定法的开发灵敏检测这种播种活性。它是用重组蛋白和生物样品相容并允许proteopathic播种活动16分钟程度的定量。

HEK 293T细胞稳定表达tau蛋白重复ðomain(RD)含有与疾病相关的突变P301S融合到CFP或YFP(以下简称为tau蛋白-RD-CFP / YFP的细胞)作为播种活性的稳定的生物传感器。在没有proteopathic种子,细胞保持tau蛋白作为水溶性单体,和具有没有明显的背景的FRET。自然吸收或牛头种子脂质体介导转导到细胞内,但是,结果在RD-CFP和RD-YFP聚集,产生的是单个细胞内通过流式细胞仪测量的FRET信号。

该测定的众多成分设计,以提高灵敏度和降低可变性。带1的单克隆细胞系:1的RD-CFP / YFP表达比率被选择的,因为它提供了最佳的信号:噪声。为了增加灵敏度,磷脂用来引入种子直接导入细胞(尽管研究摄取生物学机制,这可以省略)。最后,流式细胞仪监测FRET在群体水平和单个细胞平,与其他蛋白质聚集测定。最终的测量结果,集成的FRET密度,是高度的定量和两对细胞凝集的数量,和聚集已经发生向其中每个单元内的程度帐户。所有这些优化的参数,提高了灵敏度,并确保重现性。

该系统最近采用了全面的研究转基因P301S tau蛋白病小鼠17进行评估的时间开始和相关头播种活动进展到其他常用的tau病理学标志( 例如 ,MC1,AT8,PG5,并ThioflavinS)。播种活动是迄今为止头病理的最早和最强大的标志物进行评估,组织学检测由至少6周之前。播种活性似乎在1.5个月,并逐渐随着年龄增大,这表明proteopathic种子在其发作和/或神经变性16的级数的因果作用。

e_content“>从生物样品中的种子材料分钟水平的精确定量可以促进监测早期疾病进展的研究。通过缩短测试时间并且使得能够使用较年轻的动物,这可能增加的临床前动物试验的效率和准确性。例如,在在P301S鼠标如前所述,铅化物可作为交付早在4-6周,2-4周后进行疗效监测。该法应准确量化播种的任何削减(,或在发病播种活动的前夕)活性。FRET流式细胞仪已经在体外筛选的应用,以及,例如,抗tau蛋白的试剂例如,抗体,小分子等),可以迅速地对它们阻断直接在培养接种诱导,使用任一重组tau蛋白的能力进行测试聚集体或脑源性裂解物作为种子源图5)。采用这种设置,一旦晶种材料制备,一个前periment只需要三天完成,包括数据分析。 proteopathic播种活动的快速定量因此可以促进神经退行性疾病的许多研究。

Protocol

注:该协议强调利用FRET的流式细胞仪从小鼠生物样本检测播种活动。它还与重组原纤和人类生物样品兼容。按照IACUC批准的程序进行鼠标安乐死与脑收获。 1.脑提取以下用异氟烷(2%)深麻醉,灌注的小鼠用含有0.03%肝素冰冷的PBS,并提取在以下量具等描述的细节的大脑 。18 放置提取的组织在一个冷冻小瓶中,并通过将在液氮中冷冻单元。可选择地,?…

Representative Results

FRET流式细胞仪能敏感,定量,并从重组或生物样本快速检测播种活动。实验设置是容易的:表达的tau-RD-CFP / YFP单克隆来源的稳定细胞系转导的种子材料,孵育24-48小时,并进行流式细胞术分析(图1A)。在没有种子,生物传感器细胞保持tau蛋白以可溶,单体形式(图1B)。在种子的情况下,然而,生物传感器细胞将tau蛋白为凝聚状态(图1C)中,产生一个是?…

Discussion

此处所描述的FRET流式细胞仪系统是一个功能强大的工具,快速和定量地评估tau蛋白播种活性。它只需要适度的细胞培养的经验和FRET的应用知识和流式细胞仪。其他播种测定法,如硫磺素T – 这表现出增强的荧光当结合β片层结构 – 是费力的,需要一个纯的,重组蛋白质底物。此外, 在体外播种测定法的tau仅半定量的并且通常不敏感种子材料23,24的亚纳摩尔水平。 FRET流式细胞仪,但…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Tau Consortium (M.I.D); National Institutes of Health Grant 1R01NS071835 (M.I.D.), a Department of Defense Grant PT110816 (to M.I.D.), 1F32NS087805 (to J.L.F.), and 1F31NS079039 (to B.B.H.).

Materials

TBS Sigma T5912
cOmplete Protease Inhibitors (EDTA-free) Roche 4693159001
Cryo-vials Sarstedt 72.694.006
Analytical Balance Mettler Toledo XSE 105DU
Weighing Boats Fisher Scientific 13-735-743
15 mL conical tube USA Scientific 1475-0501
Omni Sonic Ruptor Ultrasonic Homogenizer Omni International 18-000-115
Micro-Tip for Ultrasonic Homogenizer Omni International OR-T-156
2-Propanol Fisher Scientific A451
Noise Cancelling Ear Muffs Fisher Scientific 19-145-412
Kimwipes Fisher Scientific S47299
1.5 mL tubes USA Scientific 1615-5510
Microcentrifuge  Eppendorf 5424 000.215
DPBS Life Technologies 14190-136
DMEM Life Technologies 11965-084
Fetal Bovine Serum HyClone SH30071.03
Penicillin-Streptomycin Life Technologies 15140-122
GlutaMax Life Technologies 35050-061
Trypsin-EDTA Life Technologies 25300-054
50 mL Conical Tubes Phenix Research SS-PH15
25 mL reagent resevoirs VWR 41428-954
Multi channel pipet Fisher Scientific TI13-690-049
96 well flat bottom plates Corning 3603
Opti-MEM Life Technologies 31985-070
Lipofectamine 2000 Invitrogen 11668019
96 well round bottom plates Corning 3788
16% Paraformaldehyde Electron Microscopy Sciences RT 15710
PBS Sigma-Aldrich P5493
EDTA Sigma-Aldrich ED2SS
HBSS Life Technologies 14185-052
Sorvall ST 40 Centrifuge Thermo Scientific 75004509
BIOLiner Swinging Bucket Rotor Thermo Scientific 75003796
Hemacytometer VWR 15170-172
MACSQuant VYB Flow Cytomter Miltenyi Biotec 130-096-116
Chill 96 Rack Miltenyi Biotec 130-094-459
Flow Jo analysis software Flow Jo
20 uL pipet tips Rainin GPS-L10
200 uL pipet tips Rainin GPS-250
1 mL pipet tips Rainin GPS-1000
200 uL pipet tips USA Scientific 1111-1800
5 mL serological pipett Phenix Research SPG-606180
10 mL serological pipett Phenix Research SPG-607180
25 mL Serological pipett Phenix Research SPG-760180

Riferimenti

  1. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron. 62 (1), 42-52 (2009).
  2. Zhou, J., Gennatas, E. D., Efstathios, D., Kramer, J. H., Miller, B. L., Seeley, W. W. Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome. Neuron. 73 (6), 1216-1227 (2012).
  3. Raj, A., Kuceyeski, A., Weiner, M. A Network Diffusion Model of Disease Progression in Dementia. Neuron. 73 (6), 1204-1215 (2012).
  4. Braak, H., Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82 (4), 239-259 (1991).
  5. Braak, H., Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 16 (3), 271-278 (1995).
  6. Frost, B., Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 11 (3), 155-159 (2009).
  7. Holmes, B. B., Diamond, M. I. Cellular mechanisms of protein aggregate propagation. Current Opinion in Neurology. 25 (6), 721-726 (2012).
  8. Kaufman, S. K., Diamond, M. I. Prion-like propagation of protein aggregation and related therapeutic strategies. Neurotherapeutics. 10 (3), 371-382 (2013).
  9. Holmes, B. B., Diamond, M. I. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem. 289 (29), 19855-19861 (2014).
  10. Guo, J. L., Lee, V. M. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med. 20 (2), 130-138 (2014).
  11. Frost, B., Jacks, R. L., Diamond, M. I. Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem. 284 (19), 12845-12852 (2009).
  12. Guo, J. L., Lee, V. M. Y. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. Journal of Biological Chemistry. , (2011).
  13. Holmes, B. B., et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 110 (33), E3138-E3147 (2013).
  14. de Calignon, A., et al. Propagation of Tau Pathology in a Model of Early Alzheimer’s Disease. Neuron. 73 (4), 685-697 (2012).
  15. Liu, L., et al. Trans-Synaptic Spread of Tau Pathology In Vivo. PLoS One. 7 (2), e31302 (2012).
  16. Holmes, B. B., et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A. 111 (41), E4376-E4385 .
  17. Yoshiyama, Y., et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 53 (3), 337-351 (2007).
  18. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J Vis Exp. 65 (65), (2012).
  19. Hagihara, H., Toyama, K., Yamasaki, N., Miyakawa, T. Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp. (33), (2009).
  20. Yan, Z. X., Stitz, L., Heeg, P., Pfaff, E., Roth, K. Infectivity of prion protein bound to stainless steel wires: a model for testing decontamination procedures for transmissible spongiform encephalopathies. Infect Control Hosp Epidemiol. 25 (4), 280-283 (2004).
  21. McDonnell, G., et al. Cleaning, disinfection and sterilization of surface prion contamination. J Hosp Infect. 85 (4), 268-273 (2013).
  22. Banning, C., et al. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One. 5 (2), e9344 (2010).
  23. Morozova, O. A., March, Z. M., Robinson, A. S., Colby, D. W. Conformational Features of Tau Fibrils from Alzheimer’s Disease Brain Are Faithfully Propagated by Unmodified Recombinant Protein. Biochimica. , (2013).
  24. Sui, D., Liu, M., Kuo, M. H. In vitro aggregation assays using hyperphosphorylated tau protein. J Vis Exp. (95), e51537 (2015).
check_url/it/53205?article_type=t

Play Video

Citazione di questo articolo
Furman, J. L., Holmes, B. B., Diamond, M. I. Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry. J. Vis. Exp. (106), e53205, doi:10.3791/53205 (2015).

View Video