Summary

感染症のためのモデルとしてのオルガノイド:人間の文化とマウス胃オルガノイドとピロリ菌のマイクロインジェクション

Published: November 12, 2015
doi:

Summary

Stem cell derived cultures harbor tremendous potential to model infectious diseases. Here, the culture of mouse and human gastric organoids derived from adult stem cells is described. The organoids are microinjected with the gastric pathogen Helicobacter pylori.

Abstract

Recently infection biologists have employed stem cell derived cultures to answer the need for new and better models to study host-pathogen interactions. Three cellular sources have been used: Embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) or adult stem cells. Here, culture of mouse and human gastric organoids derived from adult stem cells is described and used for infection with the gastric pathogen Helicobacter pylori. Human gastric glands are isolated from resection material, seeded in a basement matrix and embedded in medium containing growth factors epidermal growth factor (EGF), R-spondin, Noggin, Wnt, fibroblast growth factor (FGF) 10, gastrin and transforming growth factor (TGF) beta inhibitor. In these conditions, gastric glands grow into 3-dimensional organoids containing 4 lineages of the stomach. The organoids expand indefinitely and can be frozen and thawed similarly as cell lines. For infection studies, bacteria are microinjected into the lumen of the organoids. Infected organoids are processed for imaging. The described methods can be adapted to other organoids and infections with other bacteria, viruses or parasites. This allows the study of infection-induced changes in primary cells.

Introduction

病原体の研究は、in vivoでの感染を模倣するための適切なモデル系に依存しています。使用されるシステムの一部が最適ほど遠いながらいくつかの感染症剤は、適切なモデル系が不足しています。一例としては、胃がんの発症に因果関係である胃の細菌ヘリコバクター・ピロリピロリ菌 )、です。まだ癌カスケードの終点を表す癌発生用癌細胞株の根底にある分子メカニズムを分析することを目指して、より適切な細胞培養系の非存在下で、多くの研究。プライマリ、非形質転換細胞は、これらの研究のための優れたモデルとなります。しかし、初代細胞は、ドナーの数が少ないからのみ利用可能であり、より長い期間にわたって培養することができません。近年では、幹細胞研究は、感染生物学の研究のための主要な細胞培養のための新しいソースを提供するために重要な進歩を遂げました。

からの文化3幹細胞源が使用されている:胚性幹細胞(ESC)、人工多能性幹細胞(iPS細胞)または成体幹細胞。このような熱帯熱マラリア原虫 8またはトキソプラズマ原虫 9と7、寄生虫、およびそのようなバクテリオテタイオタオミクロン 10またはサルモネラ菌 11などの細菌、 彼らは、このようなサイトメガロウイルス1,2またはC型肝炎ウイルスなどのウイルス、3の感染をモデル化するために使用されてきました。最近では、いくつかのアプローチがHで感染をモデル化するために公開されています15 – ESCまたはのiPS細胞12由来オルガノイド、マウスの成体幹細胞21,22またはヒト成体幹細胞13ピロリ菌

成体幹細胞からオルガノイド培養物の開発は、マウスの腸上皮から単離された単一の幹細胞が3次元マトリックスに播種された研究に由来すると骨形態形成タンパク質(BMP)16シグナリングを阻害するためにWntシグナル伝達とノギンを高めるためにマイトジェン、RスポンジンのようにEGFを含有する腸の幹細胞の環境を模倣媒体に埋め込 ​​まれました。特にこれらの培養物は、間葉系細胞との共培養を必要としません。これらの条件下では、幹細胞は増殖し、ドメインは腸陰窩細胞、および腸絨毛の細胞を含むドメインを保有して小さな構造を形成します。オルガノイドは、このようにin vivoでの状況を模倣するために、自己組織化。今日、多くのネズミと人間的な組織から成体幹細胞 in vitroで増殖させることができ、そのような小腸および結腸17、13,18、肝臓19,20、膵臓21と、それらのin vivoでの対応を、似ているオルガノイドに自己組織化前立腺22。

ここでは、成体幹CELから培養マウスまたはヒトの胃オルガノイドのビデオプロトコルを提供LSはHでそれらを顕微注入すると、 ピロリ菌 。このプロトコルは、以前の報告13,18に基づいています。この方法は、腸のオルガノイドのような他のオルガノイド培養を培養し、感染のために適合させることができます。

Protocol

1.設立胃のオルガノイド培養注意:このプロトコルは、マウスまたはヒトの組織からの胃腺の単離のために使用することができます。これは、約1 cm 2での組織を使用することをお勧めします。ヒト組織は、胃切除または生検から得ることができます。 材料の調製注意:使用する地下行列はマトリゲルです。すべての回で氷の上で地下行列をしてください。 -20…

Representative Results

このプロトコルは、胃腺( 図2)の単離を可能にします。腺は、腺はオルガノイド( 図3)に成長できるように、ラミニンおよびコラーゲンが豊富な3次元フレームワークを提供し、ウェル内ドロップとして固化地下行列、中に播種されています。オルガノイドは、典型的には、小さな嚢胞を開始し、12〜16日以内に、彼らは50〜300ミクロン( 図4)の直径を…

Discussion

This protocol describes the use of ever-expanding, untransformed primary organoids from adult stem cells for infection biology. Critical steps are i) the isolation of viable glands, ii) expansion of organoids and iii) the microinjection. Below are some suggestions for modifications, troubleshooting and technical considerations.

Compared to other isolation methods, which use vigorous shaking or pipetting to release glands and can be equally successful, the technique presented here has the adva…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by EU Marie Curie Fellowship (EU/300686-InfO) to S.B. and a Research Prize from the United European Gastroenterology Foundation to H.C. We would like to thank Harry Begthel, Jeroen Korving and the Hubrecht Imaging Center for technical assistance, Meritxell Huch for help with initial organoid culture and Yana Zavros for discussion.

Materials

Medium
HEPES Invitrogen 15630-056
Advanced DMEM/F12 Invitrogen 12634-028
Matrigel, GFR, phenol free BD 356231
GlutaMAX Invitrogen 35050-079 Stock concentration 200 mM, final concentration 2 mM
B27 Invitrogen 17504-044 Stock concentration 50 x, final concentration 1x
N-Acetylcysteine Sigma-Aldrich A9165-5G Stock concentration 500 mM, final concentration 1 mM
Murine recombinant EGF Invitrogen PMG8043 Stock concentration 500 µg/mL, final concentration 50 ng/mL
Human recombinant FGF10 Peprotech 100-26 Stock concentration 100 µg/mL, final concentration 200 ng/mL
TGFβi A-83-01 Tocris 2939 Stock concentration 500 µM, final concentration 2 µM 
Nicotinamide Sigma-Aldrich N0636 Stock concentration 1 M, final concentration 10 mM 
[Leu15]-Gastrin Sigma-Aldrich G9145 Stock concentration 100 µM, final concentration 1 nM
RHOKi Y-27632 Sigma-Aldrich Y0503 Stock concentration 10 mM, final concentration 10 µM
Wnt3A conditioned medium Stable cell line generated in the Clevers Lab. Final concentration 50%. Cells can be obtained from Hans Clevers.
R-spondin1 conditioned medium Stable cell line generated in the Kuo Lab. Final concentration 10%. Cell line can be obtained from Calvin Kuo, Stanford.
Noggin conditioned medium Stable cell line generated in the Clevers Lab. Final concentration 10%. Cells can be obtained from Hans Clevers.
R-spondin3 R&D 3500-RS/CF Alternative source for R-spondin. This has been tested on human intestine organoids (1 µg/mL), but not yet on gastric organoids.
Noggin Peprotech 120-10 Alternative source for noggin. This has been tested on human intestine organoids (100 ng/mL), but not yet on gastric organoids.
TrypLE express Life Technologies 12605036 Enzymatic dissociation solution 
CoolCell® Alcohol-Free Cell Freezing Containers biocision BCS-405
Recovery Cell Culture Freezing Medium Invitrogen 12648-010
Antibiotics
Primocin Invivogen ant-pm-1 An antibiotics composition agains bacteria and fungi. It is helpful after initiation of a culture. For long term culture you can switch to other antibiotics or none.
Penicillin/Streptomycin Invitrogen 15140-122 Stock concentration 10000/10000 U/mL, final concentration 100/100 U/mL. Can be used alternatively to Primocin in long term culture.
Altro
Tweezers Neolabs 2-1033 Tweezers with fine tips are helpful for the removal of muscle layer from the tissue.
4 Well Multidishes Thermo Scientific 144444 You can use other Multidishes. These were particularly helpful for microinjections because they have a low outer rim and allow more mobility for the manipulator.
Micromanipulator Narishige M-152
Microinjector Narishige IM-5B
Stereomicroscope Leica MZ75
Workbench Clean Air Custom made to fit the stereomicroscope in ML2 condition
Cappillaries Harvard Apparatus GC100T-10 1 mm outer diameter, 0,78 mm inner diameter.
Micropipette Puller Sutter Instruments Flaming Brown Micropipette Puller
anti Cag A antibody Santa Cruz sc-25766

Riferimenti

  1. Aiuto, L., et al. Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells. PLoS ONE. 7 (11), e49700 (2012).
  2. Penkert, R. R., Kalejta, R. F. Human Embryonic Stem Cell Lines Model Experimental Human Cytomegalovirus Latency. mBio. 4 (3), e00298-13-e00298-13 (2013).
  3. Roelandt, P., et al. Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol. 57 (2), 246-251 (2012).
  4. Schwartz, R. E., Trehan, K., et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA. 109 (7), 2544-2548 (2012).
  5. Shlomai, A., et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA. 111 (33), 12193-12198 (2014).
  6. Wu, X., et al. Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation. PLoS Pathogens. 8 (4), e1002617 (2012).
  7. Yoshida, T., et al. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun. 416 (1-2), 119-124 (2011).
  8. Ng, S., et al. Human iPSC-Derived Hepatocyte-like Cells Support Plasmodium Liver-Stage Infection In Vitro. Stem Cell Report. 4 (2), (2015).
  9. Klotz, C., Aebischer, T., Seeber, F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host-parasite interaction. Int J Med Microbiol. 302 (4-5), 203-209 (2012).
  10. Engevik, M. A., et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. AJP: GI. 305 (10), G697-G711 (2013).
  11. Wilson, S. S., Tocchi, A., Holly, M. K., Parks, W. C., Smith, J. G. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 8 (2), 352-361 (2015).
  12. McCracken, K. W., et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 516 (7531), 400-404 (2014).
  13. Bartfeld, S., et al. In Vitro Expansion of Human Gastric Epithelial Stem Cells and Their Responses to Bacterial Infection. Gastroenterology. 148 (1), (2014).
  14. Schlaermann, P., Toelle, B., et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. , (2014).
  15. Bertaux-Skeirik, N., et al. CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation. PLOS Pathogens. 11 (2), e1004663 (2015).
  16. Sato, T., et al. Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  17. Sato, T., et al. Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett’s Epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  18. Barker, N., et al. Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell. 6 (1), 25-36 (2010).
  19. Huch, M., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494 (7436), 247-250 (2013).
  20. Huch, M., et al. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell. 160 (1-2), 299-312 (2015).
  21. Boj, S. F., et al. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell. 160 (1-2), 324-338 (2015).
  22. Karthaus, W. R., et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159 (1), 163-175 (2014).
  23. Bartfeld, S., et al. High-throughput and single-cell imaging of NF-kappaB oscillations using monoclonal cell lines. BMC cell. 11, 21 (2010).
  24. Blanchard, T. G., Nedrud, J. G. Laboratory Maintenance of Helicobacter Species. Curr Protoc Microbiol. , (2006).
  25. Van Es, J. H., de Geest, N., van de Born, M., Clevers, H., Hassan, B. A. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun. 1 (2), 1-5 (2010).
  26. Andersson-Rolf, A., Fink, J., Mustata, R. C., Koo, B. -. K. A Video Protocol of Retroviral Infection in Primary Intestinal Organoid Culture. J Vis Exp. (90), (2014).
  27. Stange, D. E., Koo, B. -. K., et al. Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell. 155 (2), 357-368 (2013).
  28. Van de Wetering, M., Sancho, E., et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 111 (2), 241-250 (2002).
  29. Schumacher, M. A., Aihara, E., et al. The use of murine-derived fundic organoids in studies of gastric physiology. Journal Physiol. 593 (8), 1809-1827 (2015).
  30. Schwank, G., Andersson-Rolf, A., Koo, B. -. K., Sasaki, N., Clevers, H. Generation of BAC Transgenic Epithelial Organoids. PLoS ONE. 8 (10), e76871 (2013).
  31. Koo, B. -. K., et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat Meth. 9 (1), 81-83 (2012).
  32. Schwank, G., et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13 (6), 653-658 (2013).
  33. Li, V. S. W., Ng, S. S., et al. Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex. Cell. 149 (6), 1245-1256 (2012).
  34. Van de Wetering, M., et al. Prospective derivation of a ‘Living Organoid Biobank’ of colorectal cancer patients. Cell. 161 (4), 933-945 (2015).
check_url/it/53359?article_type=t

Play Video

Citazione di questo articolo
Bartfeld, S., Clevers, H. Organoids as Model for Infectious Diseases: Culture of Human and Murine Stomach Organoids and Microinjection of Helicobacter Pylori. J. Vis. Exp. (105), e53359, doi:10.3791/53359 (2015).

View Video