Summary

Измерение Вложений и интернализации вируса гриппа в клетках А549 методом проточной цитометрии

Published: November 04, 2015
doi:

Summary

We present a protocol describing a semi-quantitative method for measuring both, the attachment of influenza A virus to A549 cells, as well as the internalization of virus particles into the target cells by flow cytometry.

Abstract

Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV.

Introduction

Вступление вируса гриппа А (ИФО) является многоступенчатый процесс, который начинается с связывание вируса с рецепторами на плазматической мембране клеток-мишеней 1. Рецептор IAV является сиаловой кислоты который присутствует на большом разнообразии гликопротеинов и гликолипидов. Гемагглютинина (HA), белок IAV который присутствует в вирусной оболочке связывается с сиаловой кислотой и тем самым опосредует прикрепление вирусных частиц в плазменной мембране клеток-мишеней 2. Вирус проникает в клетки через клатрин эндоцитоза, но и альтернативные пути доступа, такие, как макропиноцитозом, были описаны 3-6. Взаимодействие между НА и сиаловой кислоты оказывается достаточным для опосредования и, привязанность и запуска интернализации вирусных частиц 7. Тем не менее, альтернативные рецепторы входа были предложены и их роли в IAV вступления в настоящее время расследуются 1,8,9.

Дворняжкаrently, предпринимаются усилия для выявления факторов, принимающих, которые участвуют в жизненном цикле вируса с целью разработки крайне необходимых новых противовирусных лечения 10-12. Вирус запись будет благоприятным шагом для таргетинга рост ИФО для того, чтобы блокировать вирусную инфекцию при первой точки. Измерение различные этапы IAV вступления экспериментально сложным, как правило, большое количество вируса требуется, чтобы обнаружить входящий вирус. Кроме того, дальность обнаружения изменений в записи вируса только линейные связи с отсутствием репликации вируса. Это подчеркивает необходимость для анализов с высокой чувствительностью.

Анализ приведем позволяет обнаруживать прикрепленной вируса на клеточной поверхности, а также обнаружение вируса интернализованной по отношению к общему количеству вируса клеточно-ассоциированного. Использование биотинилированного вируса дикого типа обеспечивает удобное измерение с помощью окрашивания СТВ-Cy3 и считывания с помощью проточной цитометрии. Биотинилированный вирус холодной границу к ячейкес, чтобы вложение, но предотвратить интернализацию вирусных частиц. Клетки могут быть фиксированной, проницаемыми и окрашивали STV-Cy3 для измерения прикрепленный вирус. Сигнал от внеклеточных вирионов, прикрепленных может быть отменен, если блокирующий шаг применяется до фиксации, при котором клетки инкубируют с немеченого стрептавидина (СТВ). На следующем этапе, после прикрепления биотинилированного IAV, температура сдвигается до 37 ° С и интернализации вирусных частиц дают проходить. Интернализованная частицы защищены от связывания СТВ тем самым позволяя дискриминацию между вне- и внутриклеточных вирусов.

За экспериментальных условиях, четыре образца требуется: '0 мин': Первый образец, обозначенный "0 мин", состоит в измерении вирус холодной переплете на клеточной поверхности. '0 мин + СТВ ": Второй образец, обозначенный" 0 мин + СТВ ", дает интенсивность сигнала линии эксперимента. Прикрепленный вирус заблокировал остроумиеч СТВ и сигнала после окрашивания STV-Cy3 должны быть значительно ниже, по сравнению с "0" мин образца. '30 Мин ": Третий образец, '30 мин 'содержит прилагается и внутреннюю вирус из-за температурного сдвига до 37 ° С в течение 30 мин. '30 Мин + СТВ ": Четвертый образец, '30 мин + STV 'меры внутриклеточный фракция вирусов. Блокирующий шаг СТВ наносится после 30 мин инкубационного периода. В результате вирусные частицы на поверхности клетки связаны СТВ оставив только интернализированные вирусы для окрашивания СТВ-Cy3. Относительное количество интернализованной вируса может быть вычислена как отношение интернализованной вируса (измеренной в '30 мин + СТВ 'образца), деленное на общее количество вируса (описываемой '30' мин образца).

В качестве контроля мы предлагаем включить макет-инфицированные клетки. Сигнал после СТВ-Cy3 окрашивания макет-инфицированных клеток дает фонПолученный от протокола окрашивания. Контрольную для крепления IAV является предварительная обработка клеток с бактериальной нейраминидазы (НА). NA отщепляет сиаловой кислоты от гликопротеинов, сотовых удаляя рецепторы крепления с клеточной поверхности. Азид натрия (SA) является мощным ингибитором метаболических и, таким образом, блоки 13 эндоцитоза. Клетки, обработанные азида натрия должен быть положительным для вируса связывания, но отрицательным для интернализации.

Protocol

Примечание Перед запуском: капот использования ламинарного потока и соответствующего биоизоляции при работе с живым вирусом. Здесь мы опишем условия, подходящие для роста вируса гриппа штамма культуры A / WSN / 33. Множественность заражения (МВД) и инкубации раз могут варьироваться в зави?…

Representative Results

Мультфильм описания четырех различных экспериментальных условиях показано на рисунке 1 Результаты типичного эксперимента представлены на рисунках 2 -. 5. В "0" образец мин, биотинилированный вирус холодной связаны с клетками-мишенями, которые м?…

Discussion

Наш протокол описывает простой способ измерения вложение вирусов и интернализации с помощью проточной цитометрии. Это позволяет использование меченых вирус, который имитирует более близко вирусные инфекции по сравнению с использованием вирусоподобных частиц (VLP) дикого типа. В то вр?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана грантом Швейцарского национального научного фонда (31003A_135278) к SST. СС является бенефициаром докторской гранта Фонда исследований AXA. Мы благодарим Патриция Нигг за помощь в оформлении рисунке 1.

Materials

DMEM Life Technologies 41966-052
FBS Life Technologies 10270-106
Penicillin-Streptomycin Life Technologies 15140-163
PBS Life Technologies 14190-169  
BSA VWR Calbiochem 126579
HEPES Life Technologies 15630-100
D-Sucrose Fluka 84100
TRIS Biosolve BV 20092391
EDTA Sigma-Aldrich 3680
EZ-LINK NHS-SS-BIOTIN kit Fisher Scientific W9971E 
Bio Rad Protein Bio Assay Bio Rad 500-0006
deepwell tubes (1.2 ml microtubes) Milian 82 00 001
PFA  Lucerna chem  Electron microscopy sciences 15710
ultracentrifuge tubes Hemotec HmbH 253070
Triton X-100 Fluka 93420
STV-Cy3 Life Technologies 43-4315
STV Life Technologies 43-4302
sodium azide Fluka 71290
bacterial neuraminidase/sialidase Sigma-Aldrich N6514-1UN

References

  1. Edinger, T. O., Pohl, M. O., Stertz, S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 95, 263-277 (2014).
  2. Palese, P., Shaw, M. L., Knipe, D. M., Howley, P. M. . Fields Virolog. 2, (2007).
  3. Matlin, K. S., Reggio, H., Helenius, A., Simons, K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 91, 601-613 (1981).
  4. Sieczkarski, S. B., Whittaker, G. R. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol. 76, 10455-10464 (2002).
  5. Rust, M. J., Lakadamyali, M., Zhang, F., Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 11, 567-573 (2004).
  6. Vries, E., et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 7, e1001329 (2011).
  7. Vries, E., et al. Influenza A virus entry into cells lacking sialylated N-glycans. Proc Natl Acad Sci USA. 109, 7457-7462 (2012).
  8. Londrigan, S. L., et al. N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol. 85, 2990-3000 (2011).
  9. Wang, S. F., et al. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans. Biochem Biophys Res Commun. 373, 561-566 (2008).
  10. Pohl, M. O., Edinger, T. O., Stertz, S. Prolidase is required for early trafficking events during influenza A virus entry. J Virol. 88, 11271-11283 (2014).
  11. Konig, R., et al. Human host factors required for influenza virus replication. Nature. 463, 813-817 (2010).
  12. Ludwig, S. Targeting cell signalling pathways to fight the flu: towards a paradigm change in anti-influenza therapy. J Antimicrob Chemothe. 64, 1-4 (2009).
  13. Simoes, S., Slepushkin, V., Duzgunes, N., Pedroso de Lima, M. C. On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes. Biochim Biophys Acta. 1515, 23-37 (2001).
  14. Tran, A. T., et al. Knockdown of specific host factors protects against influenza virus-induced cell death. Cell death, and disease. 4, e769 (2013).
  15. Bradford, M. M. A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254 (1976).
  16. Macey, M. G., Macey, M. G. . Flow Cytometry Principles and Applications. , (2007).
  17. Burness, A. T., Pardoe, I. U. Effect of enzymes on the attachment of influenza and encephalomyocarditis viruses to erythrocytes. J Gen Viro. 55, 275-288 (1981).
check_url/53372?article_type=t

Play Video

Cite This Article
Pohl, M. O., Stertz, S. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry. J. Vis. Exp. (105), e53372, doi:10.3791/53372 (2015).

View Video