Summary

牙龈卟啉单作为模式生物的评价厌氧细菌的相互作用与宿主细胞

Published: December 17, 2015
doi:

Summary

This article presents two protocols: one to measure anaerobic bacteria that can successfully invade and survive within the host, and the other to visualize anaerobic bacteria interacting with host cells. This study can be applied to any cultivable anaerobe and any eukaryotic cell type.

Abstract

厌氧菌的数量远远超过许多人的壁龛,如肠道,口腔和阴道需氧菌。此外,厌氧菌感染是常见的,经常土著血统的。的一些厌氧病原体侵入人体细胞的能力使它们适应措施逃避先天免疫以及调节宿主细胞中的行为。然而,确保厌氧细菌是试验研究的事件可能会带来的挑战过程中活。 牙龈卟啉 ,革兰氏阴性厌氧菌,能够侵入的各种真核非吞噬细胞的。本文概述了如何成功培养和评估P的能力牙龈侵入人脐静脉内皮细胞(HUVEC)。两个协议被开发:一个用于测量细菌,可以成功地侵入和主机内生存,而其他的可视化的细菌与宿主细胞相互作用。这些技术需要使用一个ANAE的罗比克室提供P.牙龈与最佳生长厌氧环境。

所述第一协议是基于抗生素保护分析,这在很大程度上是用于研究的宿主细胞的入侵的细菌。然而,抗生素保护测定是有限的;仅胞内细菌是培养的下列抗生素治疗和宿主细胞裂解计量。为了评估与宿主细胞,无论是活的和死的相互作用所有的细菌,我们开发了使用荧光显微镜检查宿主 – 病原体相互作用的协议。细菌荧光标记与2',7'-二(2-羧乙基)-5-(和-6) – 羧基乙酰甲酯(BCECF-AM)和用于感染的真核细胞在厌氧条件下。以下定影用多聚甲醛和透用0.2%的Triton X-100,宿主细胞被标以TRITC鬼笔环肽和DAPI分别以标记细胞骨架和细胞核。多IMA在不同的联络点(Z堆栈)采取GES是为细菌的时空可视化获得。在这项研究中使用的方法可以适用于任何可耕厌氧菌和任何真核细胞类型。

Introduction

厌氧细菌定殖于人的身体的几乎所有表面。虽然主要在肠道和泌尿生殖道,其中氧气浓度是低的植物,它们也存在着在高水平上的皮肤,口,鼻,喉和1。厌氧细菌是内源性感染的常见原因,并且经常从患病部位分离。由于它们的性质挑剔然而,厌氧菌可能很难分离和培养。研究涉及厌氧菌一定限制条件下进行。现代厌氧培养技术使研究人员模仿学习许多厌氧菌实验室菌株,甚至临床分离2,3所需的厌氧设置。

致病性厌氧菌已经开发出一种动态关系和共同进化与它们所在的宿主细胞。最厌氧菌易受到达infecti之前杀死被宿主的免疫反应OU的水平。然而,一些病原菌已经开发机制从逃脱或破坏宿主的免疫反应。他们实现这一目标,通过机制,如免疫识别,免疫介导的中和,改变细胞介导的免疫,侵入宿主细胞,并改变免疫信号4的逃避。 牙龈卟啉 ,革兰氏阴性厌氧菌参与了口头和口外疾病, 是一个高度适于细菌病原体能够引起在宿主5-7致病变化的一个例子。

生物膜斑块口袋累积在牙齿和牙龈粘膜组织间形成能够携带受保护的大气中的氧气8厌氧菌深的裂缝。这些牙周袋作为利基关于各种厌氧病原体, 诸如铜绿牙龈 9 P。牙龈是一个梯形的病原体,它能够改造的荷兰国际集团的口腔微生物群落的促进发展的牙周病10和发展方式。它产生了大量的有效对抗宿主蛋白广谱并提供机制宿主防御11的逃避毒力因子。它也能够侵入上皮细胞,内皮细胞,成纤维细胞,和牙周膜细胞体外 12-14中 体内15。通过有效地侵入宿主细胞中,P。牙龈可以逃避宿主免疫。有效侵入宿主细胞不仅允许细菌逃离宿主防御但也作为贮存以备将来再感染以及改变宿主细胞。需要由宿主细胞参与粘附和细菌的内化的分子机制的研究进展。研究几个实验室的重点是了解体育的内在关联的分子事件牙龈由宿主细胞以及用于抑制并劫持免疫反应和生存的敌对宿主防御机制的机制。

有能够识别和表征的病原体,其能够侵入宿主细胞的许多测定法。 但是 ,在体外研究与厌氧病原体提出了许多实验问题,为研究者主要是因为它是难以执行依赖于在不存在氧的笨重仪器研究。这是由真核细胞所需要的氧气,以成长,因此必须在组织培养孵化器分别制备的事实复杂。避免这种障碍之一的方法是将大气中的氧气下进行研究,但是这将使厌氧细菌的生长是不可能的。另一种方法是使用热灭活的细菌感染和研究宿主 – 细胞相互作用。然而,不同的削弱宿主 – 病原体interacti的相关性热灭活和可行的细菌之间存在16。这是中央对学习活菌与不变的表达与宿主细胞相互作用的;因此,方法培养P.在厌氧环境牙龈给出。此外,两个简单的成本效益的协议被证明为评估P的能力牙龈由人脐静脉内皮细胞(HUVECs)被内化。所述第一协议是基于流行的抗生素保护测定。虽然实验非常简单,利用厌氧微生物时的注意事项给出。第二协议要求使用荧光扫描显微镜的可视化和交互内在P.牙龈 。每个测定有其局限性和将要讨论,以提供研究者的轮廓为研究厌氧菌的侵袭优点。虽然目前的手稿研究P.牙龈和内皮细胞,这些协议可以用于许多其它厌氧细菌以及作为其他类型的宿主细胞。

Protocol

以下协议将描述由厌氧种,P.培养和研究入侵方法牙龈 ;然而,也可以用于大量的厌氧病原体这些协议。虽然内皮细胞的使用,该协议可以用于其他的真核细胞两者的免疫和非免疫。 1.厌氧室中使用与维护 注意 : 牙龈是厌氧菌对氧的正常水平在环境空气中遇到敏感。受控的厌氧环境是体育的培养至关重要牙龈 。 </p…

Representative Results

上述协议在研究P之间宿主-病原体相互作用中使用牙龈和内皮细胞。P.牙龈 W83和P.牙龈 V3150携带缺失PG0228的是在研究中使用。的PG0228被预测可能改变的RNA和蛋白质的水平的蛋白质,其可最终影响P的相互作用编码牙龈与宿主细胞。研究PG0228对体育的影响牙龈的与宿主细胞相互作用的能力,亲和突变株与内皮细胞相互作用的能力进行比较。生存协?…

Discussion

所有上述方法可用于设计特异性试验,以评估厌氧菌与真核细胞的相互作用。然而,有几个方面的考虑,以成功地执行该实验。第一是在一个研究中所用的微生物菌株。

它是在两个菌株均存活测定法的比较以及由显微镜分析至关重要的是,它们是在类似的生长阶段和达到相似的细胞浓度如在上述的任何差异可以影响入侵效率13。当生长曲线两株细菌对之间的不同,调?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Hiroshi Miyazaki, Dr. Scott Henderson, Dr. Todd Kitten, Dr. Justin Hutcherson, Dr. Catherine Jauregui, and Collin R. Berry. This work was supported by NIH NIDCR grants R01DE016124, R01DE018039, and R01DE023304 to J.P. Lewis.

Microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility, supported, in part, with funding from NIH-NINDS Center core grant (5P30NS047463).

Materials

Vinyl Anaerobic Chamber-Type B Coy Laboratory Products Model 2000 incubator 
TSA II Trypticase Soy Agar w/5% Sheep Blood BBL 221261
Human Umbilical Vein Endothelial Cells 10-donor Pool LifeLine Technology FC-0044
VascuLife VEGF Medium Complete Kit LifeLine Technology LL-0003
TrypKit LifeLine LL-0013
Saponin Riedel-de Haen 16109
Gentamicin Sulfate Salt Sigma-Aldrich G-1264
Metronidazole Sigma-Aldrich M-3761
BCECF-AM LifeTechnologies B1150
TRITC Phalloidin  Sigma-Aldrich P1951
18 mm Circular Coverslips Electron Microscopy Sciences 72222-01
VectaShield Mounting Medium with DAPI Vector Laboratories H-1200

Riferimenti

  1. Hentges, D. J. The Anaerobic Microflora of the Human Body. Clin. Infect. Dis. 16 (4), S175-S180 (1993).
  2. Willis, A. T. . Anaerobic bacteriology: clinical and laboratory practice. , (2014).
  3. Wren, M. W., Baldwin, A. W., Eldon, C. P., Sanderson, P. J. The anaerobic culture of clinical specimens: a 14-month study. J. Med. Microbiol. 10 (1), 49-61 (1977).
  4. Woolard, M. D., Frelinger, J. A. Outsmarting the host: bacteria modulating the immune response. Immunol. Res. 41 (3), 188-202 (2008).
  5. Mayrand, D., Holt, S. C. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Rev. 52 (1), 134-152 (1988).
  6. Lamont, R. J., Jenkinson, H. F. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev. 62 (4), 1244-1263 (1998).
  7. Haffajee, A. D., Socransky, S. S. Microbial etiological agents of destructive periodontal diseases. Periodontol. 2000. 5 (1), 78-111 (1994).
  8. Listgarten, M. A. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J. Periodontol. 47 (1), 1-18 (1976).
  9. Ximénez-Fyvie, L. A., Haffajee, A. D., Socransky, S. S. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 27 (9), 648-657 (2000).
  10. Darveau, R. P., Hajishengallis, G., Curtis, M. A. Porphyromonas gingivalis as a potential community activist for disease. J. Dent. Res. 91 (9), 816-820 (2012).
  11. Holt, S. C., Kesavalu, L., Walker, S., Genco, C. A. Virulence factors of Porphyromonas gingivalis. Periodontol. 2000. 20 (1), 168-238 (1999).
  12. Lamont, R. J., Yilmaz, &. #. 2. 4. 6. ;. Z. In or out: the invasiveness of oral bacteria. Periodontol. 2000. 30 (1), 61-69 (2002).
  13. Lamont, R. J., et al. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect. Immun. 63 (10), 3878-3885 (1995).
  14. Belton, C. M., Izutsu, K. T., Goodwin, P. C., Park, Y., Lamont, R. J. Fluorescence image analysis of the association between Porphyromonas gingivalis and gingival epithelial cells. Cell. Microbiol. 1 (3), 215-223 (1999).
  15. Rautemaa, R., et al. Intracellular localization of Porphyromonas gingivalis thiol proteinase in periodontal tissues of chronic periodontitis patients. Oral Dis. 10 (5), 298-305 (2004).
  16. Kaufmann, S. H. Immunity to intracellular bacteria. Annu. Rev. Immunol. 11 (1), 129-163 (1993).
  17. Diaz, P., Rogers, A. The effect of oxygen on the growth and physiology of Porphyromonas gingivalis. Oral Microbiol. Immunol. 19 (2), 88-94 (2004).
  18. Lewis, J. P., Iyer, D., Anaya-Bergman, C. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate. Microbiology. 155, 3758-3774 (2009).
  19. Edwards, A. N., Suarez, J. M., McBride, S. M. Culturing and maintaining Clostridium difficile in an anaerobic environment. J. Vis. Exp. (79), e50787 (2013).
  20. Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. , (2001).
  21. Koch, A. L., Crandall, M. Photometric measurement of bacterial growth. The American Biology Teacher. 30 (6), 481-485 (1968).
  22. Wikins, T. D., Holdeman, L. V., Abramson, I. J., Moore, W. E. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria Antimicrob. Agents Chemother. 1 (6), 451-459 (1972).
  23. Bauer, A. W., Kirby, W. M., Sherris, J. C., Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45 (4), 493-496 (1966).
  24. Mandell, G. L. Interaction of intraleukocytic bacteria and antibiotics. J. Clin. Invest. 52 (7), 1673-1679 (1973).
  25. Menzies, B. E., Kourteva, I. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect. Immun. 66 (12), 5994-5998 (1998).
  26. Naito, M., et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15 (4), 215-225 (2008).
  27. Goebel, W., Kuhn, M. Bacterial replication in the host cell cytosol. Curr. Opin. Microbiol. 3 (1), 49-53 (2000).
  28. Gospodarowicz, D. C. Extracellular matrix and control of proliferation of vascular endothelial cells. J. Clin. Invest. 65 (6), 1351-1364 (1980).
  29. DeQuach, J. A., et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PloS One. 5 (9), e13039 (2010).
  30. Sellers, J. R., Cook, S., Goldmacher, V. S. A cytotoxicity assay utilizing a fluorescent dye that determines accurate surviving fractions of cells. J. Immunol. Methods. 172 (2), 255-264 (1994).
  31. Van Veen, H. W., et al. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J. Biol. Chem. 269 (47), 29509-29514 (1994).
  32. Jackson, V. N., Halestrap, A. P. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. J. Biol. Chem. 271 (2), 861-868 (1996).
  33. He, J., et al. Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection. Infect. Immun. 74 (7), 4214-4223 (2006).
  34. Anaya-Bergman, C., et al. Porphyromonas gingivalis ferrous iron transporter FeoB1 influences sensitivity to oxidative stress. Infect. Immun. 78 (2), 688-696 (2010).
  35. Ueshima, J., et al. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect. Immun. 71 (3), 1170-1178 (2003).
  36. Johnson, M. B., Criss, A. K. Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. JoVE. (79), (2013).
  37. Cordes, T., Maiser, A., Steinhauer, C., Schermelleh, L., Tinnefeld, P. Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Physical Chemistry Chemical Physics. 13 (14), 6699-6709 (2011).
  38. Pawley, J. . Handbook of biological confocal microscopy. , (2010).
  39. Gursoy, U., Könönen, E., Uitto, V. Prevotella intermedia ATCC 25611 targets host cell lamellipodia in epithelial cell adhesion and invasion. Oral Microbiol. Immunol. 24 (4), 304-309 (2009).
  40. Sengupta, D., et al. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization. Infect. Immun. 82 (6), 2637-2648 (2014).
  41. Reyes, L., Herrera, D., Kozarov, E., Roldán, S., Progulske-Fox, A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J. Clin. Periodontol. 40, S30-S50 (2013).
  42. Grant, M. M., et al. Oxygen tension modulates the cytokine response of oral epithelium to periodontal bacteria. J. Clin. Periodontol. 37 (12), 1039-1048 (2010).
  43. Biedermann, A., Kriebel, K., Kreikemeyer, B., Lang, H. Interactions of Anaerobic Bacteria with Dental Stem Cells: An In Vitro Study. PloS One. 9 (11), e110616 (2014).
  44. Kriebel, K., Biedermann, A., Kreikemeyer, B., Lang, H. Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens-A New In Vitro Model System. PloS One. 8 (11), e78226 (2013).
  45. Peyyala, R., Kirakodu, S. S., Novak, K. F., Ebersole, J. L. Oral microbial biofilm stimulation of epithelial cell responses. Cytokine. 58 (1), 65-72 (2012).
  46. Halldorsson, S., Lucumi, E., Gòmez-Sjöberg, R., Fleming, R. M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectro. 63, 218-231 (2015).
  47. Iyer, D., et al. AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein. Infect. Immun. 78 (6), 2385-2396 (2010).
check_url/it/53408?article_type=t

Play Video

Citazione di questo articolo
Wunsch, C. M., Lewis, J. P. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells. J. Vis. Exp. (106), e53408, doi:10.3791/53408 (2015).

View Video