Summary

h的测量<sub> 2</sub> S在原油和原油顶空用多维气相色谱法,院长交换和选择性硫检测

Published: December 10, 2015
doi:

Summary

A multidimensional gas chromatography method for the analysis of dissolved hydrogen sulfide in liquid crude oil samples is presented. A Deans switch is used to heart-cut light sulfur gases for separation on a secondary column and detection on a sulfur chemiluminescence detector.

Abstract

使用一种用于溶解的硫化氢的原油样品中的分析方法中证明气相色谱。为了有效地消除干扰,一个两维列配置的情况下,与用来从所述第一转移硫化氢到第二列(心脏切割)一个的Deans开关。液体粗采样首先分离二甲基聚硅氧烷柱,和轻质气体是心脏切割,并进一步上分离键合的多孔层开管(PLOT)柱,其能够从其他光含硫物质分离硫化氢。硫化氢然后用硫化学发光检测器检测,添加选择性的附加层。以下分离和检测的硫化氢,系统被反冲以除去存在于粗样品中的高沸点烃和保留色谱完整性。溶解的硫化氢已量化液体样品中为1.1至500 p下午,展示出广泛的应用到各种样品。该方法也已成功地用于气体样品从原油顶部空间和工艺气体袋进行分析,以测量在0.7至9700 ppm的硫化氢。

Introduction

原油的准确的分析是对石油和天然气工业必不可少的,健康和安全法规和经济性油质量的功能。为了保障原油样品的运输,有必要确定原油样品的特性制定安全法规将在释放或溢出的情况下实现的。具体地,硫化氢量化(H 2 S)是重要的,由于在气相中的高毒性;曝光低至100 ppm的可致命(http://www.cdc.gov/niosh/idlh/7783064.html)1,2。溶解硫化氢粗样品中通常被认为是腐蚀性的3,4,和可以停用用于处理油5-7的催化剂。从原油流除去硫化氢的是理想的,但没有一种方法来测量溶解 H 2 S,这是难以评估的去除治疗的成功。由于这些原因,该协议被开发用于测量dissoLVED 硫化氢重质原油样品中如加拿大的油砂的原油。

硫化氢的量化打火机基于石油或燃料样品中的许多标准方法存在的,但都没有被验证为与重质原油从加拿大的油砂通常提取中使用。 H 2 S和硫醇使用由通用石油产品(UOP)方法163 8滴定技术确定,但这种方法从用户解释偏压导致从滴定曲线的手动阅读受到影响。石油(IP)的方法570研究所采用的是专业硫化氢分析仪,加热燃油样品9,并从简单性和便携性的好处,但缺少准确性较重的样品10。美国社会测试和材料协会(ASTM)方法D5623使用气相色谱(GC)用低温冷却和硫选择性检测来测量 H 2 S在光石油液体11,12。这个标准可以改善使用环境分离和也可以应用到重质原油,因此它被用来作为基础本文所讨论的协议。

GC是一个频繁使用的技术石油样品的分析。样品被蒸发在热入口和分离发生在气相中。气相分离使得GC理想 H 2 S的分析,因为它是从液体样品加热在入口时容易释放出来。气相色谱方法可以创建并针对不同的样品,根据所使用的温度程序,柱实现,并且使用多维色谱13-15中 。已经有一些最近的事态发展,使用GC H 2 S的测量。 等证实 H 2 S和其它轻质硫化合物测量在光线和中间馏分使用多维GC和院长切换,但该方法具有不尚未应用到重质原油16。二三藏等人还定量ħ用GC,2 S在汽油然而它也还没有被使用于重质原油,并且需要子周围冷却17。该方法提出这里演示相当多的时间节省了这些以前的方法,用5分钟的完成分析的时间,相对于10分钟(良)和40分钟(迪三藏)。不幸的是,落实在我们的实验室进行比较准确这些方法是不可能的,由于设备和时间的限制。

多维气相色谱允许用户利用两列的选择性,而不是单一的塔。在传统的气相色谱,分离发生在一列。在多维气相色谱的情况下,将样品上分离两个不同的列,增强了分离和选择性。院长开关是用于采用一个两维列配置中的一个装置。该开关使用外部阀门可怕从到的两个出口18-20之一交换机上的入口克拉气流。从第一塔流出物可以被定向在两个方向上;在这种情况下,光硫气体是“心脏切”21从第一分离到多孔层开管(PLOT)柱进行二次分离,这已被证明是非常适合的H分离来自其他光硫气体2 S的 (http://www.chem.agilent.com/cag/cabu/pdf/gaspro.pdf)22-24。甲硫化学发光检测器用于检测,提供选择性硫化合物和消除可能干扰从可能已经在心脏切期间被转移到PLOT柱任何其他轻质气体。从原油样品烃被保留在第一维列和反吹过程期间被除去;这种保护的情节列从任何污染25-27。这种方法也被成功地实施了肛门氧化抑制剂的变压器油28 ysis。

这里,二维气相色谱方法用于重质原油样品中的分析和溶解硫化氢的定量。该方法被证明是适用在宽范围H 2 S的浓度,并且也可以被用于测量硫化氢气体相位样本在。

Protocol

注意:使用前请咨询所有相关的材料安全数据表(MSDS)的材料。具体而言,CS 2是高度易燃的,并且被储存并适当处理。 硫化氢气体是剧毒,和任何容器或含有硫化氢气体袋不应开启或一个正确排出通风柜之外处理。随着原油样工作都必须以饱满的个人防护设备(手套,防护眼镜,实验室外套,长裤和封闭趾鞋)来完成,所有的原油样品应被打开,传送和处理在通风柜。?…

Representative Results

为了得到硫化氢的液体和气体样品可靠的量化,适当的校准是必要的。用于校准注射和样品注射时,H 2 S的峰不应当重叠与相邻峰和应该具有可再现的峰面积。 图3示出了注入一个气体样品,其中气体过于集中于该方法的。已经发现,大于500ppm的使用250微升注射器气体浓度过载探测器。这个问题是没有遇到过的液体样品,如气相浓度的硫化氢普遍要比液体较高?…

Discussion

为了达到硫化氢的最佳的测量,该方法使用的Deans开关,反冲和硫化学发光检测器(SCD)。甲二甲基聚硅氧烷列用作第一维GC柱,并用于延缓样品中存在的较重烃的流动,使它们不会污染PLOT柱。这种效果是通过一个凉(50℃)初步分离增强。光气体通过第一维列和由心脏切进​​一步分离期间PLOT柱捕获。在SCD只响应含硫化合物,加入选择性的附加 ​​层,和防止干扰通过任何烃或其他的?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge support from the Government of Canada’s interdepartmental Program of Energy Research and Development, PERD 113, Petroleum Conversion for Cleaner Air. N.E.H would like to acknowledge her Natural Sciences and Engineering Research Council of Canada Visiting Fellowship.

Materials

Deans switch Agilent G2855A Or equivalent flow switching device
Restrictor tubing  Agilent 160-2615-10 Fused silica, deactivated, 180 µm
HP-PONA column Agilent 19091S-001
GasPro column Agilent 113-4332
Sulfur chemiluminescence detector, 355 Agilent/Sievers G6603A
H2S calibration standard, in He Air Liquide Custom order 211 ppm H2S
CS2 Fisher Scientific C184-500
Toluene, HPLC grade Fisher Scientific T290-4
Gas bag, 2 L Calibrated Instruments, Inc. GSB-P/2 Twist on/off nozzle
250 µL gas tight syringe Hamilton 81130
500 mL amber glass bottle Scientific Specialties N73616
Open top screw caps Scientific Specialties 169628
Tegrabond disc for screw caps Chromatographic Specialties C889125C 25 mm, 10/90 MIL
1 mL gas tight syringe Hamilton 81330
2.5% H2S in He gas standard Air Liquide Custom order

Riferimenti

  1. Guidotti, T. L. Hydrogen sulphide. Occ. Med. 46, 367-371 (1996).
  2. Reiffenstein, R. J., Hulbert, W. C., Roth, S. H. Toxicology of Hydrogen Sulfide. Annu. Rev. Pharmacol. Toxicol. , 109-134 (1992).
  3. Qi, Y., et al. Effect of Temperature on the Corrosion Behavior of Carbon Steel in Hydrogen Sulphide Environments. Int. J. Electrochem. Sci. 9, 2101-2112 (2014).
  4. Ma, H., et al. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros. Sci. 42, 1669-1683 (2000).
  5. Kallinikos, L. E., Jess, A., Papayannakos, N. G. Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil. J. Catal. 269, 169-178 (2010).
  6. Liu, B., et al. Kinetic investigation of the effect of H2S in the hydrodesulfurization of FCC gasoline. Fuel. 123, 43-51 (2014).
  7. Si, X., Xia, D., Xiang, Y., Zhou, Y. Effect of H2S on the transformation of 1-hexene over NiMoS/γ-Al2O3 with hydrogen. J. Nat. Gas Chem. 19, 185-188 (2010).
  8. . . Hydrogen Sulfide and Mercaptan Sulfur in Liquid Hydrocarbons by Potentiometric Titration. , UOP 163-10 (2010).
  9. . . Standard Test Method for Determination of Hydrogen Sulfide in Fuel Oils by Rapid Liquid Phase Extraction. , ASTM D7621-10 (2010).
  10. Lywood, W. G., Murray, D. . H2S in Crude Measurement Report. , (2012).
  11. . . Standard Test Method for Sulfur Compounds in Light Petroleum Liquids by Gas Chromatography and Sulfur Selective Detection. , ASTM D7621-10 (2009).
  12. Liu, W., Morales, M. . Detection of Sulfur Compounds According to ASTM D5623 in Gasoline with Agilent’s Dual Plasma Sulfur Chemiluminescence Detector (G6603A) and an Agilent 7890A Gas Chromatograph. , (2008).
  13. Barman, B. N., Cebolla, V. L., Membrado, L. Chromatographic Techniques for Petroleum and Related Products. Crit. Rev. Anal. Chem. 30, 75-120 (2000).
  14. Rodgers, R. P., McKenna, A. M. Petroleum Analysis. Anal. Chem. 83, 4665-4687 (2011).
  15. Nizio, K. D., McGinitie, T. M., Harynuk, J. J. Comprehensive multidimensional separations for the analysis of petroleum. J. Chromatogr. A. 1255, 12-23 (2012).
  16. Luong, J., Gras, R., Shellie, R. A., Cortes, H. J. Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices. J. Chromatogr. A. 1297, 231-235 (2013).
  17. Di Sanzo, F. P., Bray, W., Chawla, B. Determination of the Sulfur Components of Gasoline Streams by Capillary Column Gas Chromatography with Sulfur Chemiluminescence Detection. J. High Res. Chromatog. 17, 255-258 (1994).
  18. Deans, D. R. A new technique for heart cutting in gas chromatography. Chromatographia. 1, 18-22 (1968).
  19. Hinshaw, J. V. Valves for Gas Chromatography, Part III: Fluidic Switching Applications. LC GC N. Am. 29, 988-994 (2011).
  20. Seeley, J. V., Micyus, N. J., Bandurski, S. V., Seeley, S. K., McCurry, J. D. Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 79, 1840-1847 (2007).
  21. Tranchida, P. Q., Sciarrone, D., Dugo, P., Mondello, L. Heart-cutting multidimensional gas chromatography: A review of recent evolution, applications, and future prospects. Anal. Chim. Acta. 716, 66-75 (2012).
  22. Armstrong, D. W., Reid, G. L., Luong, J. Gas Separations: A Comparison of GasPro™ and Aluminum Oxide PLOT Columns for the Separation of Highly Volatile Compounds. Curr. Sep. 15, 5-11 (1996).
  23. Ellis, J., Vickers, A. K., George, C. Capillary Column Selectivity and Inertness for Sulfur Gas Analysis in Light Hydrocarbon Streams by Gas Chromatography. Fuel Chemistry Division Preprints. 47, 703-704 (2002).
  24. Ji, Z., Majors, R. E., Guthrie, E. J. Porous layer open-tubular capillary columns: preparations, applications and future directions. J. Chromatogr. A. 842, 115-142 (1999).
  25. Luong, J., Gras, R., Shellie, R. A., Cortes, H. J. Applications of planar microfluidic devices and gas chromatography for complex problem solving. J. Sep. Sci. 36, 182-191 (2013).
  26. Hildmann, F., Kempe, G., Speer, K. Application of the precolumn back-flush technology in pesticide residue analysis: A practical view. J. Sep. Sci. 36, 2128-2135 (2013).
  27. Gray, B. P., Teale, P. The use of a simple backflush technology to improve sample throughput and system robustness in routine gas chromatography tandem mass spectrometry analysis of doping control samples. J. Chromatogr. A. 1217, 4749-4752 (2010).
  28. Hayward, T., Gras, R., Luong, J. Characterization of selected oxidation inhibitors in transformer oils by multidimensional gas chromatography with capillary flow technology. Anal. Methods. 6, 8136-8140 (2014).
  29. Hutte, R. S., Johansen, N. G., Legier, M. F. Column Selection and Optimization for Sulfur Compound Analyses by Gas Chromatography. J. High Res. Chromatog. 13, 421-426 (1990).
  30. Yan, X. Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors. J. Sep. Sci. 29, 1931-1945 (2006).
  31. Araujo, P. Key aspects of analytical method validation and linearity evaluation. J. Chromatogr. B. 877, 2224-2234 (2009).
check_url/it/53416?article_type=t

Play Video

Citazione di questo articolo
Heshka, N. E., Hager, D. B. Measurement of H2S in Crude Oil and Crude Oil Headspace Using Multidimensional Gas Chromatography, Deans Switching and Sulfur-selective Detection. J. Vis. Exp. (106), e53416, doi:10.3791/53416 (2015).

View Video