Summary

温敏纳米结构表面的组织工程准备

Published: March 01, 2016
doi:

Summary

Nanoscaled sea-island surfaces composed of thermoresponsive block copolymers were fabricated by the Langmuir-Schaefer method for controlling spontaneous cell adhesion and detachment. Both the preparation of the surface and the adhesion and detachment of cells on the surface were visualized.

Abstract

Thermoresponsive poly(N-isopropylacrylamide) (PIPAAm)-immobilized surfaces for controlling cell adhesion and detachment were fabricated by the Langmuir-Schaefer method. Amphiphilic block copolymers composed of polystyrene and PIPAAm (St-IPAAms) were synthesized by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. A chloroform solution of St-IPAAm molecules was gently dropped into a Langmuir-trough apparatus, and both barriers of the apparatus were moved horizontally to compress the film to regulate its density. Then, the St-IPAAm Langmuir film was horizontally transferred onto a hydrophobically modified glass substrate by a surface-fixed device. Atomic force microscopy images clearly revealed nanoscale sea-island structures on the surface. The strength, rate, and quality of cell adhesion and detachment on the prepared surface were modulated by changes in temperature across the lower critical solution temperature range of PIPAAm molecules. In addition, a two-dimensional cell structure (cell sheet) was successfully recovered on the optimized surfaces. These unique PIPAAm surfaces may be useful for controlling the strength of cell adhesion and detachment.

Introduction

纳米结构表面最近吸引了大量关注,因为它们的各种潜在应用,包括图案化,细胞培养,清洗,和表面交换。例如,通过荷叶和其它响应表面的纳米结构启发超疏水表面是能够反应以外部刺激1-4。

朗缪尔膜是最广泛研究的聚合物涂层中的一个。朗缪尔膜通过滴两性分子到空气-水界面5-8形成。该膜然后可通过物理或化学吸附被转移到一个固体表面上,并且可以使用垂直和水平转移方法9-12被控制在固体表面上的分子的构象。朗缪尔膜的密度可以通过压缩的空气 – 水界面精确地调节。最近,这种方法也被证明有效的用于制造纳米尺度的海岛structur利用两亲性嵌段共聚物上课。纳米结构被假定为是由疏水性链段的芯和亲水性链段13-17的壳的。此外,在表面上的纳米结构的数量是通过控制在界面上的嵌段共聚物的每个分子的面积(A M)调节。

我们专注于一个原始,独特的无支架组织工程方法,细胞片工程,使用温度响应培养表面。所开发的技术已经应用到再生疗法为各种器官18。温度响应培养表面是由接枝聚(N- -isopropylacrylamide)(PIPAAm),温度响应分子到表面19-27制成。 PIPAAm及其共聚物表现出的低临界溶液温度(LCST)在水性介质中在接近32℃的温度。培养表面还表现出一个温度响应alternati关于疏水性和亲水性之间。在37℃时,PIPAAm接枝的表面变得疏水的,细胞容易附着和增殖的表面上,以及对现有的组织培养聚苯乙烯。当温度降低至20℃时,表面变得亲水,和细胞表面的自发分离。因此,表面上培养的汇合细胞可被收获作​​为通过改变温度完整片。这些细胞粘附和剥离性能也由朗缪尔膜包衣对实验室演示26,27制成的表面显示。聚苯乙烯(P(ST))和PIPAAm(ST-IPAAm)构成的嵌段共聚物的朗缪尔膜制成。与特定的A M的朗缪尔膜可以水平地转移到疏水改性的玻璃基板。此外,对细胞粘附和脱离由响应于温度的准备好的表面进行评价。

_content“>这里,我们描述协议热 – 反应的两亲嵌段共聚物的玻璃基板上构成的纳米结构的Langmuir膜的制造。我们的方法可以用于在表面科学的各个领域的有机纳米膜提供有效的制造技术,并可以有利于更在有效控制细胞粘附和从表面自发支队。

Protocol

1.聚苯乙烯块聚(N -isopropylacrylamide)通过两步可逆加成断裂链转移(RAFT)自由基聚合合成溶解苯乙烯(153.6毫摩尔),4-氰基-4-(ethylsulfanylthiocarbonyl)sulfanylpentanoic酸(ECT; 0.2毫摩尔)和4,4'-偶氮二(4-氰基戊酸)(ACVA; 0.04毫摩尔)在40ml 1, 4-二恶烷。冻结真空下在液氮中的溶液15-20分钟以除去反应性物质,并逐步在RT解冻。确保该解决方案完全解冻并重复这一冷冻泵解冻循…

Representative Results

聚苯乙烯和聚(N- -isopropylacrylamide)(圣IPAAms)具有特定分子量的构成的嵌段共聚物通过RAFT自由基聚合来合成。 ECT被作为Moad 等人 28所述制备作为链转移剂。不同PIPAAm链长的二圣IPAAm分子合成,并且所得到的嵌段聚合物进行表征通过1 H核磁共振(NMR)和凝胶渗透色谱(GPC)。圣IPAAms的分子量分别为32800和67900,具有窄分子量分布(1.31和1.50)。?…

Discussion

温度响应性表面由朗缪尔 – 谢弗方法制造,并为细胞粘附/拆卸和细胞片恢复表面性能进行了优化。当使用表面的制造这种方法,几个步骤是关键的。圣-IPAAm分子的分子的组合物具有在表面结构和有很大影响的表面的稳定性,并且通过扩展,对细胞粘附和脱离。特别是,圣IPAAm分子应具有窄的分子量分布。在我们的方法中,两次与不同PIPAAm链长的St-IPAAm分子通过RAFT聚合合成,使分子量和分子量分布?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This study was financially supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Program’s Project for Developing Innovation Systems “Cell Sheet Tissue Engineering Center (CSTEC)” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Materials

N-isopropylacrylamide Kohjin No catalog number
Azobis(4-cyanovaleric acid) Wako Pure Chemicals 016-19332
Styrene Sigma-Aldrich S4972
1,3,5-trioxane Sigma-Aldrich T81108
1,4-Dioxane Wako Pure Chemicals 045-24491
DMEM Sigma  D6429
PBS Nakarai 11482-15
Streptomycin GIBCO BRL 15140-163
Penicillin GIBCO BRL 15140-122
Trypsin-EDTA Sigma T4174
FBS Japan Bioserum JBS-11501
BAECs Health Science Reserch Resources Bank JCRB0099
Cover Glasses Matsunami Glass Industry C024501
AFM NanoScope V Veeco
1H NMR INOVA 400 Varian, Palo Alto
ATR/FT-IR NICOLET 6700 Thermo Scientific
GPC HLC-8320GPC Tosoh
TSKgel Super AW2500, AW3000, AW4000 Tosoh
Langmuir-Blodgett Deposition Troughs  KSV Instruments KN 2002 KSV NIWA Midium trough
Nikon ECLIPSE TE2000-U Nikon

Riferimenti

  1. Bae, Y. H., Kwon, I. C., Pai, C. M., Kim, S. W. Controlled release of macromolecules from electrical and chemical stimuli-responsive hydrogels. Makromol. Chem., Macromol. Symp. 70-71 (1), 173-181 (1993).
  2. Fu, Q., et al. Reversible control of free energy and topography of nanostructured surfaces. J. Am. Chem. Soc. 126 (29), 8904-8905 (2004).
  3. Nykanen, A., et al. Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene. Macromolecules. 40 (16), 5827-5834 (2007).
  4. Sun, T., et al. Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem. Int. Ed. Engl. 43 (3), 357-360 (2004).
  5. Shuler, R. L., Zisman, W. A. A Study of the behavior of Polyoxyethylene at the air-water interface by wave damping and other methods. J. Phys. Chem. 74 (7), 1523-1534 (1970).
  6. Kawaguchi, M., Sauer, B. B., Yu, H. Polymeric monolayer dynamics at the air/water interface by surface light scattering. Macromolecules. 22 (4), 1735-1743 (1989).
  7. Saito, W., Kawaguchi, M., Kato, T., Imae, T. Spreading solvent and temperature effects on interfacial properties of Poly (N-isopropylacrylamide) films at the air-water interface. Langmuir. 7463 (11), 5947-5950 (1996).
  8. Jheng, K. T., Hsu, W. P. Molecular weight effect of PMMA on its miscibility with PS-b-PEO at the air/water interface. J. App. Polym. Sci. 125 (3), 1986-1992 (2012).
  9. Biesalski, M. A., Knaebel, A., Tu, R., Tirrell, M. Cell adhesion on a polymerized peptide-amphiphile monolayer. Biomaterials. 27 (8), 1259-1269 (2006).
  10. Da Silva, A. M. P. S. G., Lopes, S. I. C., Brogueira, P., Prazeres, T. J. V., Beija, M., Martinho, J. M. G. Thermo-responsiveness of poly(N,N-diethylacrylamide) polymers at the air-water interface: The effect of a hydrophobic block. Journal of colloid interface sci. 327 (1), 129-137 (2008).
  11. Wang, S. Q., Zhu, Y. X. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density. Langmuir. 25 (23), 13448-13455 (2009).
  12. Estillore, N. C., Park, J. Y., Advincula, R. C. Langmuir−Schaefer (LS) macroinitiator film control on the grafting of a thermosensitive polymer brush via surface initiated-ATRP. Macromolecules. 43 (16), 6588-6598 (2010).
  13. Seo, Y. S., et al. Nanowire and mesh conformations of diblock copolymer blends at the air/water interface. Nano Lett. 4 (3), 483-486 (2004).
  14. Lu, Q., Bazuin, C. G. Solvent-assisted formation of nanostrand networks from supramolecular diblock copolymer/surfactant complexes at the air/water interface. Nano lett. 5 (7), 1309-1314 (2005).
  15. Nagano, S., Matsushita, Y., Ohnuma, Y., Shinma, S., Seki, T. Formation of a highly ordered dot array of surface micelles of a block copolymer via liquid crystal-hybridized self-assembly. Langmuir. 22 (12), 5233-5236 (2006).
  16. Perepichka, I. I., Borozenko, K., Badia, A., Bazuin, C. G. Pressure-induced order transition in nanodot-forming diblock. J. Am. Chem. Soc. 133 (493), 19702-19705 (2011).
  17. Wang, X. L., Ma, X. Y., Zang, D. Y. Aggregation behavior of polystyrene-b-poly(acrylicacid) at the air-water interface. Soft Matter. 9 (2), 443-453 (2013).
  18. Yamato, M., Okano, T. Cell sheet engineering. Mater. Today. 7 (5), 42-47 (2004).
  19. Rollason, G., Daviest, J. E., Sefton, M. V. Preliminary report on cell culture on a thermally reversible copolymer. Biomaterials. 14 (2), 153-155 (1993).
  20. Park, Y. S., Ito, Y., Imanishi, Y. Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir. 14 (4), 910-914 (1998).
  21. Kwon, O. H., Kikuchi, A., Yamato, M., Okano, T. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials. 24 (7), 1223-1232 (2003).
  22. Kikuchi, A., Okano, T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Control. Release. 101 (1-3), 69-84 (2005).
  23. Fukumori, K., et al. Characterization of ultra-thin temperature-responsive polymer layer and its polymer thickness dependency on cell attachment/detachment properties. Macromol. biosci. 10 (10), 1117-1129 (2010).
  24. Takahashi, H., Nakayama, M., Yamato, M., Okano, T. Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules. 11 (8), 1991-1999 (2010).
  25. Nakayama, M., Yamada, N., Kumashiro, Y., Kanazawa, H., Yamato, M., Okano, T. Thermoresponsive poly(N-isopropylacrylamide)-based block copolymer coating for optimizing cell sheet fabrication. Macromol. Biosci. 12 (6), 751-760 (2012).
  26. Sakuma, M., et al. Control of cell adhesion and detachment on Langmuir-Schaefer surface composed of dodecyl-terminated thermo-responsive polymers. J. Biomater. Sci., Polym. Ed. 25 (5), 431-443 (2014).
  27. Sakuma, M., et al. Thermoresponsive nanostructured surfaces generated by the Langmuir-Schaefer method are suitable for cell sheet fabrication. Biomacromolecules. 15 (11), 4160-4167 (2014).
  28. Moad, G., Chong, Y. K., Postma, A., Rizzardo, E., Thang, S. H. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer. 46 (19), 8458-8468 (2005).
  29. Nishida, K., et al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. N. Engl. J. Med. 351 (12), 1187-1196 (2004).
  30. Ohki, T., et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 143 (3), 582-588 (2012).
  31. Sawa, Y., et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg. Today. 42 (2), 181-184 (2012).

Play Video

Citazione di questo articolo
Sakuma, M., Kumashiro, Y., Nakayama, M., Tanaka, N., Haraguchi, Y., Umemura, K., Shimizu, T., Yamato, M., Okano, T. Preparation of Thermoresponsive Nanostructured Surfaces for Tissue Engineering. J. Vis. Exp. (109), e53465, doi:10.3791/53465 (2016).

View Video