Summary

冷却率相关的椭偏仪测量确定薄膜玻膜的动力学

Published: January 26, 2016
doi:

Summary

在这里,我们提出了一个协议,用于冷却速率取决于椭圆光度法实验,可确定玻璃化转变温度 (Tg),平均动力学,脆性和超冷却的液体的膨胀系数和玻璃用于各种玻璃状材料。

Abstract

本报告旨在全面描述了利用椭偏仪的冷却速度依赖性T 克(CR-T G)实验的实验技术。这些测量是简单的高通量表征实验,由此可以判定玻璃化转变温度 (T g)中,平均动力学,脆性和超冷却的液体和玻璃状状态为各种玻璃材料的膨胀系数。此技术允许这些参数在一次实验中进行测量,而其它方法必须结合各种不同的技术来调查所有这些性能的。动态测量接近 Tg是特别具有挑战性。冷却速度依赖性T 测量在其上直接探测本体和表面弛豫动力学其他方法的优点是,它们是相对快速和简单的实验,不利用荧光团或其他复杂的前perimental技术。此外,这种技术探测技术相关的薄膜在温度和松弛时间(τα)制度有关的玻璃化转变(τα> 100秒)的平均动力学。的限制,使用椭圆偏光冷却速度依赖性T 实验的是,它无法探测的弛豫时间相关的粘度测量(τα<< 1秒)。其他的冷却速度依赖 Tg测量技术,但可以扩展CR-T 方法G更快的松弛时间。此外,该技术可以使用,只要该膜的完整性保持整个实验用于任何玻璃状系统。

Introduction

凯迪琼斯和Corey 1的开创性工作表明,超薄聚苯乙烯膜的玻璃化转变温度 (Tg)相对于所述体相值在厚度小于60nm的低减小。从那时起,许多实验研究2-11都支持所观察到的减少 Tg是通过迁移率提高了的靠近这些膜的自由表面的层所引起的假设。然而,这些实验是一个单一的弛豫时间间接措施,因此,存在一个争论12-18集中于平均薄膜动力学和在空气/聚合物界面的动态之间有直接的关系。

要回答这个问题的争论,很多研究都直接测量自由表面(τ )的动态。纳米颗粒包埋,19,20纳米孔松弛,21和荧光22的研究表明,在空气/聚合物界面ħ作为级动力学订单比体的α松弛时间(τα)具有比τα的弱得多的温度依赖性更快。由于其弱的温度依赖性的,这些膜的表面 τ,薄聚苯乙烯膜的19-22和增强的动力学,23,24相交散装阿尔法松弛(τα)在一个单一的点T *,这是几度以上 Tg,并在≈1秒的τα。的T *的存在可以解释为什么实验进行探测弛豫时间比*快看不到任何对 Tg超薄聚苯乙烯薄膜的厚度依赖13-18最后,而增强的移动层,表明它具有直接测量厚度为4-8纳米,20-22有证据表明,在空气/聚合物界面的动态的传播长度比所述移动面Laye的厚度大得多河5,25,26

本报告旨在全面描述一个协议,利用椭偏仪的冷却速度依赖性T 克(CR-T G)的实验。的CR-T 此前已用于描述超薄膜聚苯乙烯的平均动力。23,24,27,28此外,近来,使用该技术,以显示在超薄聚苯乙烯膜的平均动态之间有直接的关系和23的 CR-T 测量优于其它类型的测量,如荧光,纳米粒子嵌入,纳米孔松弛,nanocalorimetry,介电谱,以及布里渊光散射的优点动力学在自由表面,研究的是,它们是相对快速和简单的实验不利用荧光团或其他复杂的实验技术。在椭圆偏振光谱法的最新进展允许使用这种技术能够有效地确定光普罗珀特超薄膜聚合物和其他类型的杂化材料具有优异的精度的独立实体。因此,该技术探测技术适用薄膜中的温度和时间制度有关的玻璃化转变(T≤ Tg,τα≥100秒)的平均动力学。此外,这种技术将提供关于玻璃状的膨胀系数的信息和晚饭冷却液体状态以及该系统,然后可以用散装胶片数据相比较的脆弱性。最后,CR- Tg实验可以使用,只要该膜的完整性保持整个实验用于任何玻璃状系统。

Protocol

1.膜的制备称量0.04克聚苯乙烯,并放入30ml的小瓶中。 称取2克甲苯到小瓶。通过聚苯乙烯的甲苯溶液重量2%得到的约100nm的膜。 让解决方案静坐O / N充分溶解聚苯乙烯,让解决方案的解决。 放置1厘米×1厘米硅(Si)晶片上旋涂机。 旋转晶片以8,000rpm进行45秒。虽然它在旋转,下降纺丝晶片上约1毫升甲苯。 注:所有涉及旋涂步骤被在通风橱中进行。 ?…

Representative Results

拟合原始椭偏数据 聚苯乙烯膜是透明的,在椭圆计(500-1,600纳米)的波长范围。因此,一个柯西模型是用于描述折射聚苯乙烯膜的折射率的良好模型。 图1A示出 Ψ(λ)和Δ(λ)为厚(274毫微米)膜聚苯乙烯,并将所得配合到一例柯西模型 。对于膜?…

Discussion

冷却速率依赖性T 测量是高通量的表征实验可以确定该 Tg,玻璃和超冷却的液体中,温度的平均动力学依赖的膨胀系数,和一个特定的玻璃状物质在脆弱一次实验。此外,与荧光,嵌入,或纳米孔松弛实验,CR-T 实验是相对快速和简单的,因为他们不使用荧光团或其他复杂的实验技术。由于椭圆偏振的敏感性,这种方法可用于厚度薄至几纳米,厚至几微米的膜,只要…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

笔者想感谢詹姆斯·福雷斯特在这种技术最初的想法帮助。26这项工作是由美国宾夕法尼亚大学的资金支持,由美国国家科学基金会的MRSEC计划下奖项是部分支持没有。 DMR-11- 20901在宾夕法尼亚大学。

Materials

Toluene Sigma Aldrich 179418-1L This can be purchased from any chemical company.
Atactic Polystyrene Polymer Source Inc. P-4092-S This can be purchased from any chemical company.
THMS 600 temperature stage Linkam THMS 600 any temperature stage that can be fit to an ellipsometer could be used.
M2000V Spectroscopic Ellipsometer J.A. Woollam M200V This procedure should be applicable for any spectroscopic ellipsometer.
Spin Coater Laurell Technologies WS-650-23B This Procedure is possible with any spin coater
Sample vials Fisher Scientific 02-912-379 Any sample vials will do
Silicon wafers Virginia semi conductors 325S1410694D

Riferimenti

  1. Keddie, J. L., Jones, R. A. L., Cory, R. A. Size-Dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27 (1), 59-64 (1994).
  2. Forrest, J. A., Veress, K. D., Dutcher, J. R. Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev.E. 56 (5), 5705-5716 (1997).
  3. Forrest, J. A., Mattsson, J. Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys. Rev.E. 61 (1), R53-R56 (2000).
  4. Sharp, J. S., Forrest, J. A. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. PRL. 91 (23), 235701 (2003).
  5. Ellison, C. J., Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mat. 2 (10), 695-700 (2003).
  6. Priestley, R. D., Ellison, C. J., Broadbelt, L. J., Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science. 309 (5733), 456-459 (2005).
  7. Ellison, C. J., Kim, S. D., Hall, D. B., Torkelson, J. M. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements. Euro. Phys. J. E. 8 (2), 155-166 (2002).
  8. Ellison, C. J., Mundra, M. K., Torkelson, J. M. Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass Transition−Nanoconfinement effect and the cooperativity length scale. Macromolecules. 38 (5), 1767-1778 (2005).
  9. Yang, Z., Fujii, Y., Lee, F. K., Lam, C. H., Tsui, O. K. C. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science. 328 (5986), 1676-1679 (2010).
  10. Tsui, O. K. C., Zhang, H. F. Effects of chain ends and chain entanglement on the glass transition temperature of polymer thin films. Macromolecules. 34 (26), 9139-9142 (2001).
  11. Roth, C. B., Dutcher, J. R. Glass Transition and Chain Mobility in thin Polymer Films. J. Electroanal. Chem. 584, 13-22 (2005).
  12. Ediger, M. D., Forrest, J. A. Dynamics near Free Surfaces and the Glass Transition in Thin Polymer Films: A View to the Future. Macromolecules. 47 (2), 471-478 (2014).
  13. Serghei, A., Huth, H., Schick, C., Kremer, F. Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules. 41 (10), 3636-3639 (2008).
  14. Huth, H., Minakov, A. A., Schick, C. Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J. Polym. Sci. B. 44 (20), 2996-3005 (2006).
  15. Tress, M., et al. Glassy dynamics in condensed isolated polymer chains. Science. 341 (6152), 1371-1374 (2013).
  16. Boucher, V. M., et al. T g depression and invariant segmental dynamics in polystyrene thin films. Soft Matter. 8 (19), 5119-5122 (2012).
  17. Yu, M., Olson, E. A., Zhang, M., Zhang, Z., Allen, L. H. Glass transition in ultrathin polymer films: Calorimetric study. PRL. 91 (8), 085703 (2003).
  18. Kremer, F., Tress, M., Mapesa, E. U. Glassy dynamics and glass transition in nanometric layers and films: A silver lining on the horizon. J. Non-Crys. Solids. 407, 277-283 (2015).
  19. Qi, D., Ilton, M., Forrest, J. Measuring surface and bulk relaxation in glassy polymers. Euro. Phys. J. E. 34 (6), 1-7 (2011).
  20. Teichroeb, J. H., Forrest, J. A. Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces. PRL. 91 (1), 016104 (2003).
  21. Fakhraai, Z., Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science. 319 (5863), 600-604 (2008).
  22. Paeng, K., Swallen, S. F., Ediger, M. D. Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133 (22), 8444-8447 (2011).
  23. Glor, E. C., Fakhraai, Z. Facilitation of interfacial dynamics in entagled polymer films. JCP. 141 (9), 194505 (2014).
  24. Fakhraai, Z., Forrest, J. A. Probing slow dynamics in supported thin polymer films. PRL. 95 (2), 025701 (2005).
  25. Roth, C. B., McNerny, K. L., Jager, W. F., Torkelson, J. M. Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules. 40 (7), 2568-2574 (2007).
  26. Priestley, R. D., Ellison, C. J., Broadbelt, L. J., Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science. 309 (5733), 456-459 (2005).
  27. Gao, S., Koh, Y. P., Simon, S. L. Calorimetric Glass Transition of Single Polystyrene Ultrathin Films. Macromolecules. 46 (92), 562-570 (2013).
  28. Tropin, T. V., Schulz, G., Schmelzer, J. W. P., Schick, C. Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates. J. Non-Cryst. Solids. 409, 63-75 (2015).
  29. Kim, S., Hewlett, S. A., Roth, C. B., Torkelson, J. M. Confinement effects of glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films. Eur. Phys. J.E. 30, 83-92 (2009).
  30. Schawe, J. E. K. Vitrification in a wide cooling rate range: The relations between cooling rate, relaxation time, transition width and fragility. JCP. 141, 184905 (2014).
  31. Donth, E., Korus, J., Hempel, E., Beiner, M. Comparison of DSC heating rate and HCS frequency at the glass transition. Thermochimica Acta. 304-305, 239-249 (1997).
  32. Zhang, C., Guo, Y., Priestley, R. D. Confined glassy properties of polymer nanoparticles. J. Polym. Sci. B. 51 (7), 574-586 (2013).
  33. Koh, Y. P., Grassia, L., Simon, S. L. Structural Recovery of a Single Polystyrene Thin Film Using Nanocalorimetry to Extend the Aging Time and Temperature Range. Thermochimica Acta. 603, 135-141 (2015).
  34. Gao, S., Simon, S. L. Measurement of the limiting fictive temperature over five decades of cooling and heating rates. Thermochimica Acta. 603, 123-127 (2015).
check_url/it/53499?article_type=t

Play Video

Citazione di questo articolo
Glor, E. C., Fakhraai, Z. Cooling Rate Dependent Ellipsometry Measurements to Determine the Dynamics of Thin Glassy Films. J. Vis. Exp. (107), e53499, doi:10.3791/53499 (2016).

View Video