Summary

Um modelo de cultura de fatia organotipica de glioblastoma humano para estudo de migração de células tumorais e efeitos específicos de pacientes de drogas anti-invasivas

Published: July 20, 2017
doi:

Summary

Os modelos atuais ex vivo de glioblastoma (GBM) não são otimizados para o estudo fisiologicamente relevante da invasão de tumores humanos. Aqui, apresentamos um protocolo para geração e manutenção de culturas de fatia organotípicas a partir de tecido GBM humano fresco. É fornecida uma descrição da microscopia por lapso de tempo e técnicas quantitativas de análise de migração celular.

Abstract

Glioblastoma (GBM) continua a apresentar um prognóstico clínico extremamente fraco, apesar da terapia cirúrgica, quimioterapêutica e de radiação. A invasão progressiva do tumor no parênquima cerebral circundante representa um desafio terapêutico duradouro. Para desenvolver terapias anti-migração para GBM, os sistemas modelo que fornecem um fundo fisiologicamente relevante para experimentação controlada são essenciais. Aqui, apresentamos um protocolo para a geração de culturas de fatia de tecido GBM humano obtido durante ressecção cirúrgica. Essas culturas permitem a experimentação ex vivo sem passar por meio de xenoenxertos de animais ou culturas de células únicas. Além disso, descrevemos o uso da microscopia confocal de varredura a laser em lapso temporal em conjunto com o rastreamento celular para estudar quantitativamente o comportamento migratório das células tumorais e resposta associada à terapêutica. As fatias são reproduzíveis geradas dentro de 90 minutos da aquisição de tecido cirúrgico. Células fluorescentes mediadas por RetrovirallyAs imagens de imagem confocal e de migração de células tumorais são posteriormente concluídas dentro de duas semanas de cultura. Nós usamos com sucesso essas culturas de fatia para descobrir fatores genéticos associados ao aumento do comportamento migratório no GBM humano. Além disso, validamos a capacidade do modelo para detectar variações específicas do paciente em resposta a terapias anti-migração. Avançando, as culturas de fatia GBM humanas são uma plataforma atraente para uma avaliação rápida e ex vivo da sensibilidade do tumor a agentes terapêuticos, a fim de promover a terapia neurocircóológica personalizada.

Introduction

O estudo laboratorial do glioblastoma (GBM) é dificultado pela falta de modelos que recapitulem fielmente as características patológicas necessárias da doença humana, nomeadamente a migração de células tumorais e a invasão. Estudos comparativos de ensaios de invasão in vitro 2D e 3D, bem como modelos de cultura de fatias de roedores 3D, descobriram programas de migração celular mecanicamente dispares nestes dois contextos, potencialmente limitando a translatabilidade dos achados dos sistemas 2D à doença humana 1 , 2 , 3 . O paradigma de cultura e imagem de corte de tumor organotípico aqui descrito permite o estudo da migração de células tumorais em fatias de tecido de tumor humano ex vivo obtido a partir de ressecção cirúrgica. Assim, as culturas de fatia de tecido tumoral ressecado cirurgicamente em conjunto com microscopia confocal de lapso de tempo fornecem uma plataforma para estudar a migração de células tumorais no nativoMicroambiente sem dissolução de tecido ou passagem de cultura.

Existe uma extensa literatura que emprega modelos de cultura de fatias de cérebros de roedores de GBM gerados a partir de xenoenxertos de tumores humanos, tumores induzidos por retrovirais e sobreposições celulares para estudar invasão tumoral 1 , 2 , 3 , 4 , 5 . Recentemente, vários grupos descreveram a geração de culturas de fatia organotípicas diretamente do tecido GBM humano 6 , 7 , 8 , 9 , 10 . No entanto, existe uma variação acentuada entre os protocolos publicados em relação à técnica de corte e aos meios de cultura. Além disso, o uso de culturas de fatias organotipicas se concentrou em pontos finais experimentais estáticos que incluíram mudanças no sinal celularNg, proliferação e morte. O protocolo aqui descrito expande sobre paradigmas de cultura de fatia anteriores, incorporando observação resolvida no tempo de comportamentos dinâmicos de células tumorais através de microscopia confocal de varredura laser com lapso de tempo. A descoberta recente de inter 11 e intratumoral 12 , 13 variação genética no GBM humano ressalta a importância de vincular essa heterogeneidade com os comportamentos das células tumorais e suas implicações na resposta do tumor à terapia. Aqui, relatamos um protocolo simplificado e reprodutível para o uso de culturas de fatia diretas de um tecido de câncer humano para visualizar migração de células tumorais em tempo quase em tempo real.

Protocol

Antes de iniciar a coleta de amostras de tecido do paciente, o consentimento informado deve ser obtido de cada paciente de acordo com um protocolo aprovado da Junta de Revisão Institucional (IRB). Os autores deste protocolo receberam o consentimento para o trabalho descrito nos protocolos IRB aprovados no Hospital da Universidade do Colorado e no Hospital Inova Fairfax. Os dados coletados dessas culturas de fatia não foram usados ​​para direcionar as decisões de cuidados ao paciente. 1….

Representative Results

Nosso grupo gerou com sucesso culturas de fatia de mais de 50 pacientes submetidos à ressecção GBM inicial. Este protocolo de produção, cultura, reviragem retroviral, imagem e análise de migração de fatia foi simplificado em um fluxo de trabalho reprodutível ( Figura 1 ). Criticamente, essas fatias organotípicas de GBM demonstram concordância com o tecido tumoral originário em toda a cultura, incluindo manutenção de características patológicas e mic…

Discussion

As culturas de fatias organotípicas de tecido de câncer humano fornecem uma plataforma atraente e subutilizada para experimentação pré-clínica de tradução. Não existe conhecimento dos comportamentos a nível populacional das células tumorais no que diz respeito à migração, proliferação e morte celular no microambiente do tumor nativo. Criticamente, estudar a resposta tumoral à terapia de forma dinâmica e resolvida no tempo ao nível do comportamento celular pode esclarecer novos mecanismos de resistênc…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Gostaríamos de agradecer ao Dr. Lee Niswander e ao Dr. Rada Massarwa por sua experiência técnica e contribuições para o protocolo de imagem confocal de cultura de fatia descrito aqui. Além disso, graças ao Dr. Kalen Dionne, que forneceu conhecimentos sobre como otimizar o corte de tecido cerebral e os parâmetros de cultura.

Materials

DMEM High Glucose  Invitrogen (Gibco) 11960-044
Neurobasal-A Medium, minus phenol red Invitrogen (Gibco) 12349-015
B-27 Supplement (50X), serum free Invitrogen (Gibco) 17504-044
Penicillin-Streptomycin (10,000 U/mL) Invitrogen (Gibco) 15140-122
GlutaMAX Supplement Invitrogen (Gibco) 35050-061
L-Glutamine (200 mM) Invitrogen (Gibco) 25030-081
HEPES (1 M) Invitrogen (Gibco) 15630-080
Nystatin Suspension Sigma-Aldrich N1638-20ML 10,000 unit/mL in DPBS, aseptically processed, BioReagent, suitable for cell culture
UltraPure Low Melting Point Agarose Invitrogen (Gibco) 16520-050 Melts at 65.5 C, Remains fluid at 37 C, and sets rapidly below 25 C.
Isolectin GS-IB4 from Griffonia simplicifolia, Alexa Fluor 647 Conjugate Thermo Fisher (Molecular Probes) I32450 Used in media to label Microglia/Macrophages
pRetroX-IRES-ZsGreen1 Vector Clonetech 632520
Retro-X Concentrator  Clonetech 31455 Binding resin for non-ultracentrifugation concentration of viral supernatants
pVSG-G Vector Clonetech 631530 part of the Retro-X Universal Retroviral Expression System
GP2-293 Viral packaging cells Clonetech 631530 part of the Retro-X Universal Retroviral Expression System
Cyanoacrylate Glue (Super Glue) Sigma-Aldrich Z105899 Medium-viscosity
Equipment
Peel-A-Way Embedding Mold (Square – S22) Polysciences, Inc. 18646A-1 Molds for tumor sample embedding
Stainless Steel Micro Spatulas Fisher Scientific S50823 Bend instrument 45 degrees at the neck of the spoon blade
Curved Fisherbrand Dissecting Fine-Pointed Forceps Fisher Scientific  08-875
Single Edge Razor Blade (American Safety Razors) Fisher Scientific 17-989-001 Blade edge is 0.009" thick. Crimped blunt-edge cover is removed before loading onto vibratome.
Leica VT1000 S Vibratome Leica Biosystems VT1000 S
Hydrophilic PTFE cell culture insert  EMD Millipore PICM0RG50 30 mm, hydrophilic PTFE, 0.4 µm pore size
35 mm Glass Bottom Dishes  MatTek P35G-1.5-20-C Sleeve 20mm glass diameter. Coverslip glass thickness 1.5
LSM 510 Confocal Micoscope Zeiss LSM 510 10x Air Objective (c-Apochromat NA 0.45)
PECON Stagetop Incubator PeCON Germany (Discontinued) Incubator PM 2000 RBT is a comprable product designed for use with Zeiss Microscopes.

Riferimenti

  1. Beadle, C., et al. The role of myosin II in glioma invasion of the brain. Mol Biol Cell. 19, 3357-3368 (2008).
  2. Farin, A., et al. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia. 53, 799-808 (2006).
  3. Panopoulos, A., Howell, M., Fotedar, R., Margolis, R. L. Glioblastoma motility occurs in the absence of actin polymer. Mol Biol Cell. 22, 2212-2220 (2011).
  4. Ivkovic, S., et al. Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol Biol Cell. 23, 533-542 (2012).
  5. Assanah, M., et al. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci. 26, 6781-6790 (2006).
  6. Chaichana, K. L., et al. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases. J Neurosci Methods. 164, 261-270 (2007).
  7. Grube, S., et al. Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis. J Neurooncol. 118, 277-287 (2014).
  8. Hovinga, K. E., et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 28, 1019-1029 (2010).
  9. Merz, F., et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neurooncol. 15, 670-681 (2013).
  10. Xu, J., et al. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures. J Neurooncol. 105, 241-251 (2011).
  11. Verhaak, R. G., et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities. in PDGFRA, IDH1, EGFR, and NF1. Cancer cell. 17, 98-110 (2010).
  12. Gill, B. J., et al. MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc Natl Acad Sci USA. 111, 12550-12555 (2014).
  13. Snuderl, M., et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer cell. 20, 810-817 (2011).
  14. Kakita, A., Goldman, J. E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron. 23, 461-472 (1999).
  15. Meijering, E., Dzyubachyk, O., Smal, I., van Cappellen, W. A. Tracking in cell and developmental biology. Sem Cell Dev Biol. 20, 894-902 (2009).
  16. Parker, J. J., et al. Gefitinib selectively inhibits tumor cell migration in EGFR-amplified human glioblastoma. Neurooncol. 15, 1048-1057 (2013).
  17. Brat, D. J., et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 64, 920-927 (2004).
  18. Shweiki, D., Itin, A., Soffer, D., Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359, 843-845 (1992).
  19. Shamir, E. R., Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 15, 647-664 (2014).
  20. Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R., Kettenmann, H. The brain tumor microenvironment. Glia. 60, 502-514 (2012).
  21. Di Cristofori, A., et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 6, 17514-17513 (2015).
  22. Vaira, V., et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci USA. , 8352-8356 (2010).
  23. Gerlach, M. M., et al. Slice cultures from head and neck squamous cell carcinoma: a novel test system for drug susceptibility and mechanisms of resistance. Br J Cancer. 110, 479-488 (2014).
  24. Holliday, D. L., et al. The practicalities of using tissue slices as preclinical organotypic breast cancer models. J Clin Pathol. 66, 253-255 (2013).
  25. Maund, S. L., Nolley, R., Peehl, D. M. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate. Lab Invest. 94, 208-221 (2014).

Play Video

Citazione di questo articolo
Parker, J. J., Lizarraga, M., Waziri, A., Foshay, K. M. A Human Glioblastoma Organotypic Slice Culture Model for Study of Tumor Cell Migration and Patient-specific Effects of Anti-Invasive Drugs. J. Vis. Exp. (125), e53557, doi:10.3791/53557 (2017).

View Video