Summary

生物印刷细胞化构造使用组织特异性水凝胶生物油墨

Published: April 21, 2016
doi:

Summary

我们描述一组一起提供组织模仿水凝胶生物油墨与官能的和可行的3-D组织构建可bioprinted在体外筛选应用中使用的协议。

Abstract

Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model “organoids” that can be used in in vitro systems for drug and toxicology screening.

Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues.

Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

Introduction

近年来,各种各样的技术已经变得可用,通过谋求制造,或biofabricate,他们解决了对功能的器官和组织的替代来源的需求。生物印刷已成为最有希望的,这些技术中的一个。生物印刷可以被认为是生物份的机器人添加剂制造的一种形式,可以使用3维建立或图案上可行的器官样或组织样结构。1在大多数情况下,生物印刷采用3维(3 -D),其由计算机涉及细胞和生物材料存入的精确位置,从而扼要打印装置解剖学-模仿生理结构。2这些设备打印“生物油墨”,它可以采取细胞聚集体的形式,包封在水凝胶的细胞或粘性流体或细胞接种微载体,以及无细胞聚合物,其提供机械结构或作为无细胞PLAceholders 3,4继生物印刷过程中,所得到的结构可以成熟为功能性的组织或器官的结构,并用于其预期的最终应用。5,6-迄今为止,一个完整的全功能人大小器官尚未印制,但它仍然是生物印刷的研究和开发的主要长期目标。2然而,小规模的,目前正在在许多应用,包括病理学建模,药物开发和毒理学筛选实施“类器官”组织构建。

一位研究人员在生物印刷应用技术已经遇到的主要障碍是,很少有材料已用于生物印刷的明确目的开发的。要有效地生物印刷成功,生物材料必须符合4个基本要求。生物材料需要有1)的适当的机械性能,以允许沉积(无论是通过一个喷嘴作为凝胶或一个i-挤出nkjet作为液滴),2),以保持它的形状作为淀积后的3-D结构的一个组成部分的能力,3)的能力为的2现有特征的用户控制,以及4)一个细胞友好和支持的环境在所有生物印刷的过程的阶段。7历史上,工作生物印刷已经常常试图在雇用生物印刷设备现有的传统生物材料而不考虑其兼容性,而不是设计的生物材料有必要与生物印刷后续印刷后的应用程序的性能。

各种bioinks的最近研制与沉积和制造硬件更好的界面。标准水凝胶系统造成显著的问题,因为他们一般既可以是前体的力学性能不足,或者如果可以打印喷嘴堵塞或变成打散在挤压过程中聚合水凝胶流体解决方案。我们的团队,以及行吟诗人RS,已经探索各种水凝胶制剂,以解决这些生物印刷问题,包括细胞球体印刷成水凝胶基质,从微毛细管5,8-细胞和凝胶长丝挤出,9-11挤出透明质酸(HA)-gold纳米颗粒的水凝胶用动态交联的属性使用光聚合的水凝胶刚度的12时间控制甲基丙烯酸HA和明胶,13为基础的纤维蛋白原凝血酶交联,14,15离子交换海藻胶原凝胶,16日和最近的快速聚合紫外线(UV) -引发交联,17

这些例子表明,可以通过有效地bioprinted生成材料的可行性。然而,除了与硬件集成,以成功地产生可行的和功能性的3-D组织构建,生物材料必须包含生物化学和机械线索在维持细胞援助生存力和功能。这些额外的因素,生物化学和机械型材,可以对bioprinted组织构建成功函数显著影响。

两个小区和本机外基质(ECM)是负责呈现宽范围的信号分子如生长因子和其它细胞因子的其他细胞。这些信号的组合从组织到组织而变化,但也可以是在调节细胞和组织的行为非常有效和有影响。18从不同器官用人组织特异性细胞外基质成分和实施为水凝胶或水凝胶的一部分已探索与成功。19-21这种方法,它包括脱细胞的给定组织,粉碎它,并且将其溶解的,可用于从任何组织产生组织特异性生化信号,并且可以在三维水凝胶构建体并入。22

另外,它被广泛记载,在身体组织占据了广泛刚度。23这样,能够调整生物材料,如弹性模量E'或剪切弹性模量G'的机械性能,是在组织工程的有用工具。如上所述,在生物油墨机械性能控制允许使用一个软的凝胶,然后可以通过二次交联在后一点上,可以实现的弹性模量的水平在哪些进一步操作基于挤出的生物制造匹配的靶器官类型的那个。例如,生物材料可定制以满足5-10千帕的刚度本地人一样肝脏,23或匹配10-15千帕的刚度像原生心脏组织,理论上24,25增加这些组织体发挥作用的能力以类似的方式,以它们的天然组织对应物。环境刚度对细胞表型的影响已经EXPlored在近年来,特别是相对于干细胞。恩氏等人证实在驾驶间充质干细胞(MSC)朝向与组织弹性匹配的衬底的谱系计算机辅助该基板的弹性。25这一概念已进一步探索分化成肌肉,心脏功能,肝表型,造血干细胞的增殖和维护的干细胞的治疗潜力的。24,26-29如果能够调谐的水凝胶,以不同的弹性模量是将用于biofabricate组织构建的生物材料的一个重要特征。30

在这里,我们描述了代表在我们的实验室用于配制可挤出bioprinted水凝胶系统中的通用方法,和自定义为1)包含特定的组织类型的生物化学轮廓和2)模仿组织类型的弹性模量的协议。通过解决这些需求,我们的目标是为provide可以概括在体内的生理化学和生物特性的材料的组织。31本文中所描述的模块化的水凝胶的复合系统利用多交联的方法,以得到可挤出bioinks,并允许二次交联,以稳定和增加的刚度高端产品来匹配一系列的组织类型。生化定制是通过组织特异性细胞外基质成分满足。作为示范,我们聘请了肝脏特异性品种这水凝胶系统来的BioPrint功能性肝类器官结构。描述的协议,使用自定义的3-D设备生物印刷。在一般情况下,该协议可以适应大多数基于挤出的打印机,具体印刷参数显着变化对于每种类型的设备,并且需要由用户测试。

Protocol

1.水凝胶生物油墨配方及制备方法为了提供组织特异性生化型材,制备如前对肝所述组织特异性的ECM消化的解决方案。20 注意:一般来说,此ECM摘要将包括被使用的最终水凝胶生物油墨体积的40%。的ECM的消化溶液数百毫升可以制备,等分,并在-80℃下以供将来使用冷冻。 到水凝胶制剂,溶解光引发剂,2-羟基-4'前 – 在0.1%的(2-羟基乙氧基)-2-甲基苯丙酮,水重量/?…

Representative Results

当上述过程被正确执行,水凝胶应包含特异于靶组织类型的生物化学信息,20允许对生物印刷和最终弹性模量,34的高度控制和支持存活功能性细胞中的组织构建。 水凝胶定制 到最 ​​好的模拟天然肝,水凝胶生物油墨是由肝脏ECM解决方案和生长因子阵列补充 20 ECM解决?…

Discussion

有几个部件是当试图biofabricate三维组织构建,以便最终使用在人类或用于体外筛选应用考虑的关键。使用适当的细胞成分决定了端电位的功能,而生物制造装置本身确定的通用方法用于到达末端构建体。第三成分,该生物材料,是同样重要的,因为它提供双重角色。具体地,生物材料组件必须与两个生物制造硬件( ,bioprinters),并且还支持潜在脆弱生物细胞组分相容。优化这两…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者非常感谢由空间和海战系统中心太平洋(SSC PACIFIC)的合同号N6601-13-C-2027下的国防威胁降低局(DTRA)的资金。这种材料的出版并不构成此结果或结论的政府批准。

Materials

Hyaluronic acid Sigma 53747
Gelatin Sigma G6144
2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone Sigma 410896
Hyaluronic acid and gelatin hydrogel kit (HyStem-HP) ESI-BIO GS315 Kit contains the components Heprasil (thiolated and heparinized hyaluronic acid), Gelin-S (thiolated gelatin), and Extralink (PEGDA)
PEG 8-Arm Alkyne, 10 kDa Creative PEGWorks PSB-887
Primary human hepatocytes Triangle Research Labs HUCPM6
Primary human liver stellate cells ScienCell 5300
Primary human Kupffer cells Life Technologies HUKCCS
Hepatocyte Basal Media (HBM) Lonza CC-3199
Hepatocyte Media Supplement Kit Lonza CC-3198 HCM SingleQuot Kits (contains ascorbic acid, 0.5mL; bovine serum albumin [fatty acid free], 10 mL; gentamicin sulfate/amphotericin B, 0.5mL; hydrocortisone 21-hemisuccinate, 0.5 mL; insulin, 0.5 mL; human recombinant epidermal growth factor, 0.5 mL; transferring, 0.5 mL)
Triton X-100 Sigma T9284 Other manufacturers are ok.
Ammonium hydroxide Fischer Scientific A669 Other manufacturers are ok.
Fresh porcine cadaver tissue n/a n/a
Lyophilizer any n/a
Freezer mill any n/a
Bioprinter n/a n/a The bioprinter described herein was custom built in-house. In general, other devices are adequate provided they support computer controlled extrusion-based printing of hydrogel materials.
Hanging drop cell culture plate InSphero CS-06-001 InSphero GravityPlus 3D Culture Platform

Riferimenti

  1. Visconti, R. P., et al. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther. 10, 409-420 (2010).
  2. Derby, B. Printing and prototyping of tissues and scaffolds. Science. 338, 921-926 (2012).
  3. Fedorovich, N. E., et al. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 13, 1905-1925 (2007).
  4. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R. R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157-161 (2003).
  5. Boland, T., Mironov, V., Gutowska, A., Roth, E. A., Markwald, R. R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol. 272, 497-502 (2003).
  6. Mironov, V., Kasyanov, V., Drake, C., Markwald, R. R. Organ printing: promises and challenges. Regen Med. 3, 93-103 (2008).
  7. Skardal, A., Atala, A. Biomaterials for integration with 3-d bioprinting. Ann Biomed Eng. 43, 730-746 (2015).
  8. Mironov, V., et al. Organ printing: tissue spheroids as building blocks. Biomaterials. 30, 2164-2174 (2009).
  9. Norotte, C., Marga, F. S., Niklason, L. E., Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 30, 5910-5917 (2009).
  10. Skardal, A., Zhang, J., Prestwich, G. D. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 31, 6173-6181 (2010).
  11. Bertassoni, L. E., et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 6, 024105 (2014).
  12. Skardal, A., Zhang, J., McCoard, L., Oottamasathien, S., Prestwich, G. D. Dynamically crosslinked gold nanoparticle – hyaluronan hydrogels. Adv Mater. 22, 4736-4740 (2010).
  13. Skardal, A., et al. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A. 16, 2675-2685 (2010).
  14. Skardal, A., et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 1, 792-802 (2012).
  15. Xu, T., et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 5, 015001 (2013).
  16. Xu, T., et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 34, 130-139 (2013).
  17. Murphy, S. V., Skardal, A., Atala, A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A. 101, 272-284 (2013).
  18. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials. 28, 3587-3593 (2007).
  19. Freytes, D. O., Tullius, R. S., Valentin, J. E., Stewart-Akers, A. M., Badylak, S. F. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res A. 87, 862-872 (2008).
  20. Skardal, A., et al. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials. 33, 4565-4575 (2012).
  21. Johnson, T. D., Braden, R. L., Christman, K. L. Injectable ECM scaffolds for cardiac repair. Methods Mol Biol. 1181, 109-120 (2014).
  22. Pati, F., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat comm. 5, 3935 (2014).
  23. Vanderhooft, J. L., Alcoutlabi, M., Magda, J. J., Prestwich, G. D. Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosci. 9, 20-28 (2009).
  24. Engler, A. J., et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 121, 3794-3802 (2008).
  25. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  26. Chaudhuri, T., Rehfeldt, F., Sweeney, H. L., Discher, D. E. Preparation of collagen-coated gels that maximize in vitro myogenesis of stem cells by matching the lateral elasticity of in vivo muscle. Methods Mol Biol. 621, 185-202 (2010).
  27. Lozoya, O. A., et al. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials. 32, 7389-7402 (2011).
  28. Holst, J., et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol. 28, 1123-1128 (2010).
  29. Skardal, A., Mack, D., Atala, A., Soker, S. Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater. 17, 307-316 (2013).
  30. Rutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R., Shah, R. N. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 27, 1607-1614 (2015).
  31. Malda, J., et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater. 25, 5011-5028 (2013).
  32. Kang, H. W., Lee, S. J., Atala, A., Yoo, J. J. Integrated organ and tissue printing methods, system and apparatus. US Patent. , (2011).
  33. Drewitz, M., et al. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol J. 6, 1488-1496 (2011).
  34. Skardal, A., et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 25, 24-34 (2015).
  35. Peattie, R. A., et al. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials. 25, 2789-2798 (2004).
  36. Flynn, L., Prestwich, G. D., Semple, J. L., Woodhouse, K. A. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials. 28, 3834-3842 (2007).
  37. Flynn, L., Prestwich, G. D., Semple, J. L., Woodhouse, K. A. Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds. J Biomed Mater Res A. 89, 929-941 (2009).
  38. Duflo, S., Thibeault, S. L., Li, W., Shu, X. Z., Prestwich, G. Effect of a synthetic extracellular matrix on vocal fold lamina propria gene expression in early wound healing. Tissue Eng. 12, 3201-3207 (2006).
  39. Duflo, S., Thibeault, S. L., Li, W., Shu, X. Z., Prestwich, G. D. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng. 12, 2171-2180 (2006).
  40. Liu, Y., Shu, X. Z., Prestwich, G. D. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 12, 3405-3416 (2006).
  41. Liu, Y., et al. Accelerated repair of cortical bone defects using a synthetic extracellular matrix to deliver human demineralized bone matrix. J Orthop Res. 24, 1454-1462 (2006).
  42. Zhang, J., Skardal, A., Prestwich, G. D. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials. 29, 4521-4531 (2008).
  43. Serban, M. A., Scott, A., Prestwich, G. D. Unit 10.14, Use of hyaluronan-derived hydrogels for three-dimensional cell culture and tumor xenografts. Curr Protoc Cell Biol. Chapter 10, (2008).
  44. Xu, X., Prestwich, G. D. Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer. 116, 1739-1750 (2010).
  45. Liu, Y., Shu, X. Z., Prestwich, G. D. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng. 13, 1091-1101 (2007).
  46. Skardal, A., Devarasetty, M., Rodman, C., Atala, A., Soker, S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. , (2015).
check_url/it/53606?article_type=t

Play Video

Citazione di questo articolo
Skardal, A., Devarasetty, M., Kang, H., Seol, Y., Forsythe, S. D., Bishop, C., Shupe, T., Soker, S., Atala, A. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink. J. Vis. Exp. (110), e53606, doi:10.3791/53606 (2016).

View Video