Summary

从混合三维培养使用近红外Photoimmunotherapy技术选择性细胞消除

Published: March 14, 2016
doi:

Summary

Eliminating specific cells without damaging other cells is extremely difficult, especially in established tissue, yet there is an urgent need for a cell elimination method in the tissue engineering field. Here, we present a method for specific cell elimination from a mixed 3D cell culture using near infrared photoimmunotherapy (NIR-PIT).

Abstract

Recent developments in tissue engineering offer innovative solutions for many diseases. For example, tissue engineering using induced pluripotent stem cell (iPS) emerged as a new method in regenerative medicine. Although this tissue regeneration is promising, contamination with unwanted cells during tissue cultures is a major concern. Moreover, there is a safety concern regarding tumorigenicity after transplantation. Therefore, there is an urgent need for eliminating specific cells without damaging other cells that need to be protected, especially in established tissue. Here, we present a method for specific cell elimination from a mixed 3D cell culture in vitro with near infrared photoimmunotherapy (NIR-PIT) without damaging non-targeted cells. This technique enables the elimination of specific cells from mixed cell cultures or tissues.

Introduction

消除特定细胞而不损害其他细胞是非常困难的,特别是在建立组织,并且存在用于在组织工程领域中的细胞消除方法的迫切需要。现今在再生医学领域中,使用胚胎干细胞(ES),多能干细胞(的PSCs),或诱导的多能干细胞(IPS)的组织培养物是有前途的材料1 3。

虽然这个组织再生是有前途的,具有不需要的细胞污染是一个大问题。此外,有移植4,5-之后致瘤性的安全问题。虽然许多研究都集中在这些问题上,以消除特定细胞,尤其是在再生医学6 8,没有实际的方法已被开发出来。

近红外photoimmunotherapy(NIR-PIT)是一种基于抗体 – 光吸收剂conjugat的处理E(APC)。一个APC由细胞特异性单克隆抗体(mAb)和光吸收剂,IR700的。 IR700是亲水性二氧化硅的酞菁衍生物和本身并不9诱发光毒性。 IR700是通过赖氨酸分子的侧链酰胺残基共价结合到抗体上。 APC的结合细胞膜上的靶分子,然后诱导暴露于NIR光在690纳米的近后立即细胞坏死。在暴露于近红外光,细胞膜破裂,导致细胞死亡9 14。 NIR-PIT已被证明是具有多个抗体或抗体片段,其中包括抗EGFR,抗HER2,抗PSMA,抗CD25,抗间皮素,抗GPC3,和抗CEA 15有效 21。因此,近红外PIT可对多种靶分子使用。此外,近红外PIT是良好控制的治疗,通过限制近红外二极管灯允许特定区域的选择性治疗ŧ照射18,22。

这里,我们目前采用NIR-PIT从混合3D文化特异性细胞清除的方法。

Protocol

注意:以下协议描述必要的步骤来消除使用NIR-PIT特定细胞。控制和有关NIR-PIT和细胞活力等细节可以在其他地方18中找到。 1.共轭IR700,以单克隆抗体(MAB) 在2-5毫克/毫升的0.1M 的 Na 2 HPO 4(pH为8.6)的溶液制备的兴趣的mAb。 混合mAb的6.8纳摩尔用10mM IR700 30.8纳摩尔在0.1M 的 Na 2 HPO 4在微量离心管中液(pH 8.6),并在室温孵?…

Representative Results

以光学监控NIR-PIT中,A431细胞系,其过表达EGFR的效果,被遗传修饰以也表达GFP和荧光素酶(A431-LUC-GFP)。作为近红外PIT的一个非目标,所述的Balb / 3T3细胞系的光学修饰以表达RFP(3T3-RFP)。 APC的,帕尼单抗-IR700(泛IR700),合成。混合球状体,其中分别组成细胞(A431-LUC-GFP和3T3-RFP)的各种比例的是按照此协议( 图1)制成。反复NIR-PIT与泛IR700(参见图2A</…

Discussion

我们证明特定细胞消除从混合三维细胞培养物的方法,而不使用近红外-PIT损害对非靶细胞。到目前为止,存在一旦组织被建立或细胞消除无实际方法移植后。因此,NIR-PIT是实现这个很有前途的方法。这种技术也可在体内 18,22利用因为的APCs显示出类似的药代动力学为单克隆抗体本身。靶细胞类型可适于与各种的APC。各种抗体或抗体片段,其中包括抗EGFR,抗PSMA,抗间皮素和…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国国立卫生研究院院内研究计划,国家癌症研究所,癌症研究中心的支持。

Materials

IRDye 700DX Ester Infrared Dye LI-COR Bioscience (Lincoln, NE, USA) 929-70011
Na2HPO4 SIGMA-ALDRICH (St. Louis, MO, USA) S9763
Sephadex G25 column (PD-10)  GE Healthcare (Piscataway, NJ, USA) 17-0851-01
Coomassie (bradford) Plus protein assay Thermo Fisher Scientific Inc (Waltham, MA, USA) PI-23200
Perfecta3D 96-Well hanging Drop Plates 3D Biomatrix Inc (Ann Arbor, MI, USA) HDP1096-8
Optical power meter Thorlabs (Newton, NJ, USA) PM100
LED: L690-66-60 Marubeni America Co. (Santa Clara, CA, USA) L690-66-60
Vectibix (panitumumab) Amgen (Thousand Oaks, CA, USA)
35mm glass bottom dish, dish size 35mm, well size 10mm Cellvis (Mountain View, CA, USA) D35-10-0-N

Riferimenti

  1. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481 (7381), 295-305 (2012).
  2. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell stem cell. 10 (6), 678-684 (2012).
  3. Birchall, M. A., Seifalian, A. M. Tissue engineering’s green shoots of disruptive innovation. Lancet. 6736 (14), 11-12 (2014).
  4. Ben-David, U., Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer. 11 (4), 268-277 (2011).
  5. Hanna, J. H., Saha, K., Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 143 (4), 508-525 (2010).
  6. Lee, M. -. O., Moon, S. H., et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. U.S.A. 110 (35), 3281-3290 (2013).
  7. Miura, K., Okada, Y., et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27 (8), 743-745 (2009).
  8. Tang, C., Lee, A. S., et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29 (9), 829-834 (2011).
  9. Mitsunaga, M., Ogawa, M., Kosaka, N., Rosenblum, L. T., Choyke, P. L. Cancer cell – selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17 (12), 1685-1691 (2011).
  10. Mitsunaga, M., Nakajima, T., Sano, K., Kramer-Marek, G., Choyke, P. L., Kobayashi, H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer. 12 (1), 345 (2012).
  11. Nakajima, T., Sano, K., Mitsunaga, M., Choyke, P. L., Kobayashi, H. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res. 72 (18), 4622-4628 (2012).
  12. Sano, K., Mitsunaga, M., Nakajima, T., Choyke, P. L., Kobayashi, H. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET. J. Nucl. Med. 54 (5), 770-775 (2013).
  13. Sato, K., Watanabe, R., et al. Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol. Oncol. 8 (3), 620-632 (2014).
  14. Sato, K., Nagaya, T., Mitsunaga, M., Choyke, P. L., Kobayashi, H. Near infrared photoimmunotherapy for lung metastases. Cancer Lett. 365 (1), 112-121 (2015).
  15. Sato, K., Hanaoka, H., Watanabe, R., Nakajima, T., Choyke, P. L., Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Mol. Cancer Ther. 14 (8), 141-150 (2014).
  16. Sato, K., Choyke, P. L., Kobayashi, H. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model. PloS one. 9 (11), 113276 (2014).
  17. Sato, K., Nagaya, T., Choyke, P. L., Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC Preclinical Experience. Theranostics. 5 (7), 698-709 (2015).
  18. Sato, K., Nakajima, T., Choyke, P. L., Kobayashi, H. Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine. RSC Adv. 5, 25105-25114 (2015).
  19. Watanabe, R., Hanaoka, H., et al. Photoimmunotherapy Targeting Prostate-Specific Membrane Antigen: Are Antibody Fragments as Effective as Antibodies. J. Nucl. Med. 56 (1), 140-144 (2014).
  20. Nakajima, T., Sano, K., Choyke, P. L., Kobayashi, H. Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics. 3 (6), 357-365 (2013).
  21. Shirasu, N., Yamada, H. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int J Cancer. 135 (11), 1-14 (2014).
  22. Sato, K., Nagaya, T., Nakamura, Y., Harada, T., Choyke, P. L., Kobayashi, H. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget. 6 (23), 19747-19758 (2015).
  23. Nakajima, T., Sato, K., et al. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity. BMC cancer. 14 (1), 389 (2014).
  24. Klimanskaya, I., Rosenthal, N., Lanza, R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov. 7 (2), 131-142 (2008).
  25. Burmester, G. R., Feist, E., Dörner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10 (2), 77-88 (2014).
  26. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12 (4), 252-264 (2012).
check_url/it/53633?article_type=t

Play Video

Citazione di questo articolo
Sato, K., Choyke, P. L., Hisataka, K. Selective Cell Elimination from Mixed 3D Culture Using a Near Infrared Photoimmunotherapy Technique. J. Vis. Exp. (109), e53633, doi:10.3791/53633 (2016).

View Video