Summary

Selektiv Cell Elimination fra Mixed 3D Kultur Ved hjælp af en i nærheden af ​​infrarød Photoimmunotherapy Teknik

Published: March 14, 2016
doi:

Summary

Eliminating specific cells without damaging other cells is extremely difficult, especially in established tissue, yet there is an urgent need for a cell elimination method in the tissue engineering field. Here, we present a method for specific cell elimination from a mixed 3D cell culture using near infrared photoimmunotherapy (NIR-PIT).

Abstract

Recent developments in tissue engineering offer innovative solutions for many diseases. For example, tissue engineering using induced pluripotent stem cell (iPS) emerged as a new method in regenerative medicine. Although this tissue regeneration is promising, contamination with unwanted cells during tissue cultures is a major concern. Moreover, there is a safety concern regarding tumorigenicity after transplantation. Therefore, there is an urgent need for eliminating specific cells without damaging other cells that need to be protected, especially in established tissue. Here, we present a method for specific cell elimination from a mixed 3D cell culture in vitro with near infrared photoimmunotherapy (NIR-PIT) without damaging non-targeted cells. This technique enables the elimination of specific cells from mixed cell cultures or tissues.

Introduction

Eliminering specifikke celler uden at beskadige andre celler er yderst vanskeligt, især i etablerede væv, og der er et presserende behov for en celle eliminationsmetode i vævet ingeniørområdet. Dag inden for regenerativ medicin, vævskulturer benytter embryonale stamceller (ES), pluripotente stamceller (PSC) eller induceret pluripotente stamcelle (IPS) er lovende materialer 1 3 ud.

Selvom denne vævsregeneration er lovende, kontaminering med uønskede celler er et stort problem. Desuden er der en sikkerhedsrisiko for tumorgenicitet efter transplantation 4,5. Skønt mange undersøgelser har fokuseret på disse emner for at fjerne specifikke celler, især i regenerativ medicin 6 8, er blevet udviklet nogen praktisk metode.

I nærheden af ​​infrarød photoimmunotherapy (NIR-PIT) er en behandling baseret på et antistof-fotoabsorberende conjugate (APC). En APC består af en celle-specifikt monoklonalt antistof (mAb) og et fotoabsorberende, IR700. IR700 er et hydrofilt silica-phthalocyanin derivat og inducerer ikke fototoksicitet af sig selv 9. IR700 er kovalent konjugeret til antistoffet via amidresterne på sidekæden af ​​lysin molekyler. APC binder målmolekyler på cellemembranen og derefter inducerer næsten øjeblikkelig celle nekrose efter udsættelse for NIR lys ved 690 nm. Under udsættelsen for NIR-lys, cellemembranen brister fører til celle Død 9 14. NIR-PIT har vist sig at være effektiv med flere antistoffer eller antistoffragmenter, herunder anti-EGFR, anti-HER2, anti-PSMA, anti-CD25, anti-mesothelin, anti-GPC3, og anti-CEA 15 -. 21 Derfor kan NIR-PIT anvendes mod en bred vifte af målmolekyler. Desuden NIR-PIT er en velkontrolleret behandling, der muliggør selektiv behandling af specifikke regioner ved at begrænse NIR-light bestråling 18,22.

Her præsenteres en metode til specifik celle eliminering hjælp NIR-PIT fra blandede 3D kulturer.

Protocol

Bemærk: Følgende protokol beskriver de nødvendige skridt til at fjerne specifikke celler ved hjælp af NIR-PIT. Kontrol og andre detaljer om NIR-PIT og cellernes levedygtighed kan findes andre steder 18. 1. Konjugering af IR700 til monoklonale antistoffer (mAb) Forbered mAb af interesse på 2-5 mg / ml i 0,1 M Na 2 HPO 4 (pH 8,6) opløsning. Bland 6,8 nmol mAb med 30,8 nmol 10 mM IR700 i 0,1 M Na 2 HPO 4-opløsning (pH 8,6) i et mikro…

Representative Results

For optisk at overvåge effekten af ​​NIR-PIT, at A431-cellelinje, der overudtrykker EGFR, blev genetisk modificeret til at også at udtrykke GFP og luciferase (A431-luc-GFP). Som en ikke-mål for NIR-PIT blev Balb / 3T3 cellelinje optisk modificeret til at udtrykke RFP (3T3-RFP). APC, panitumumab-IR700 (pan-IR700), blev syntetiseret. Blandede sfæroider, som blev sammensat af forskellige forhold af celler (A431-luc-GFP og 3T3-RFP) blev fremstillet i overensstemmelse med denne protok…

Discussion

Vi demonstrerer en fremgangsmåde til specifik celle eliminering fra en blandet 3D cellekultur uden beskadigelse ikke-målceller ved hjælp af NIR-PIT. Hidtil er der ingen praktisk metode til celleeliminering når vævet er etableret, eller efter transplantation. Således NIR-PIT er en lovende metode til at opnå dette. Denne teknik kan også anvendes in vivo 18,22, eftersom APC'er viser samme farmakokinetik som mAb selv. Målcelletypen kan tilpasses med forskellige APC. Forskellige anti…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Denne forskning blev støttet af Intramural Research Program for National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Materials

IRDye 700DX Ester Infrared Dye LI-COR Bioscience (Lincoln, NE, USA) 929-70011
Na2HPO4 SIGMA-ALDRICH (St. Louis, MO, USA) S9763
Sephadex G25 column (PD-10)  GE Healthcare (Piscataway, NJ, USA) 17-0851-01
Coomassie (bradford) Plus protein assay Thermo Fisher Scientific Inc (Waltham, MA, USA) PI-23200
Perfecta3D 96-Well hanging Drop Plates 3D Biomatrix Inc (Ann Arbor, MI, USA) HDP1096-8
Optical power meter Thorlabs (Newton, NJ, USA) PM100
LED: L690-66-60 Marubeni America Co. (Santa Clara, CA, USA) L690-66-60
Vectibix (panitumumab) Amgen (Thousand Oaks, CA, USA)
35mm glass bottom dish, dish size 35mm, well size 10mm Cellvis (Mountain View, CA, USA) D35-10-0-N

Riferimenti

  1. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481 (7381), 295-305 (2012).
  2. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell stem cell. 10 (6), 678-684 (2012).
  3. Birchall, M. A., Seifalian, A. M. Tissue engineering’s green shoots of disruptive innovation. Lancet. 6736 (14), 11-12 (2014).
  4. Ben-David, U., Benvenisty, N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer. 11 (4), 268-277 (2011).
  5. Hanna, J. H., Saha, K., Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 143 (4), 508-525 (2010).
  6. Lee, M. -. O., Moon, S. H., et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. U.S.A. 110 (35), 3281-3290 (2013).
  7. Miura, K., Okada, Y., et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27 (8), 743-745 (2009).
  8. Tang, C., Lee, A. S., et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29 (9), 829-834 (2011).
  9. Mitsunaga, M., Ogawa, M., Kosaka, N., Rosenblum, L. T., Choyke, P. L. Cancer cell – selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17 (12), 1685-1691 (2011).
  10. Mitsunaga, M., Nakajima, T., Sano, K., Kramer-Marek, G., Choyke, P. L., Kobayashi, H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer. 12 (1), 345 (2012).
  11. Nakajima, T., Sano, K., Mitsunaga, M., Choyke, P. L., Kobayashi, H. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res. 72 (18), 4622-4628 (2012).
  12. Sano, K., Mitsunaga, M., Nakajima, T., Choyke, P. L., Kobayashi, H. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET. J. Nucl. Med. 54 (5), 770-775 (2013).
  13. Sato, K., Watanabe, R., et al. Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol. Oncol. 8 (3), 620-632 (2014).
  14. Sato, K., Nagaya, T., Mitsunaga, M., Choyke, P. L., Kobayashi, H. Near infrared photoimmunotherapy for lung metastases. Cancer Lett. 365 (1), 112-121 (2015).
  15. Sato, K., Hanaoka, H., Watanabe, R., Nakajima, T., Choyke, P. L., Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Mol. Cancer Ther. 14 (8), 141-150 (2014).
  16. Sato, K., Choyke, P. L., Kobayashi, H. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model. PloS one. 9 (11), 113276 (2014).
  17. Sato, K., Nagaya, T., Choyke, P. L., Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC Preclinical Experience. Theranostics. 5 (7), 698-709 (2015).
  18. Sato, K., Nakajima, T., Choyke, P. L., Kobayashi, H. Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine. RSC Adv. 5, 25105-25114 (2015).
  19. Watanabe, R., Hanaoka, H., et al. Photoimmunotherapy Targeting Prostate-Specific Membrane Antigen: Are Antibody Fragments as Effective as Antibodies. J. Nucl. Med. 56 (1), 140-144 (2014).
  20. Nakajima, T., Sano, K., Choyke, P. L., Kobayashi, H. Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics. 3 (6), 357-365 (2013).
  21. Shirasu, N., Yamada, H. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int J Cancer. 135 (11), 1-14 (2014).
  22. Sato, K., Nagaya, T., Nakamura, Y., Harada, T., Choyke, P. L., Kobayashi, H. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget. 6 (23), 19747-19758 (2015).
  23. Nakajima, T., Sato, K., et al. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity. BMC cancer. 14 (1), 389 (2014).
  24. Klimanskaya, I., Rosenthal, N., Lanza, R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov. 7 (2), 131-142 (2008).
  25. Burmester, G. R., Feist, E., Dörner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10 (2), 77-88 (2014).
  26. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12 (4), 252-264 (2012).

Play Video

Citazione di questo articolo
Sato, K., Choyke, P. L., Hisataka, K. Selective Cell Elimination from Mixed 3D Culture Using a Near Infrared Photoimmunotherapy Technique. J. Vis. Exp. (109), e53633, doi:10.3791/53633 (2016).

View Video