Summary

Time-Lapse Video Microscopia per la valutazione di EYFP-Parkin aggregazione come marcatore per cellulare Mitophagy

Published: May 04, 2016
doi:

Summary

Herein, we describe in detail a time-lapse video microscopy approach to measuring the temporal recruitment of EYFP-Parkin during the selective removal of damaged mitochondria. This dynamic process of EYFP-Parkin-dependent removal of damaged mitochondria can be used as an indicator of cellular health under different experimental conditions.

Abstract

Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach.

Introduction

Macro autophagy is an intracellular process that involves the catabolic degradation of both damaged and dysfunctional cellular components, such as organelles and proteins for the purpose of either recycling or energy production. To initiate this metabolic process, the cell engulfs the damaged cellular components into a double-membrane structure, known as an autophagosome, which fuses with a lysosome and its content is degraded and recycled 1,2. There are two major types of autophagy, the non-selective and selective. The non-selective autophagy process occurs when the cell is under nutrient deprivation conditions and needs to scavenge for both essential nutrients and energy. However, selective autophagy occurs to mediate the removal of both dysfunctional/damaged organelles and proteins that otherwise could be toxic. One of the most studied selective autophagy process is the removal of mitochondria, termed mitophagy 1,3-5.

Mitochondria are the central organelles for cell metabolism and the primary source of adenosine triphosphate (ATP) via oxidative phosphorylation through the electron transport chain, fatty acid oxidation, and tricarboxylic acid (TCA) cycle. Moreover, mitochondria regulate reactive oxygen species (ROS) production and release proteins that participate in cell death pathways 6-8.

PTEN-induced putative kinase 1 (PINK1) and Parkin RBR E3 ubiquitin ligase (Parkin) are the key proteins implicated in the mitophagy process. Parkin can protect against cell death by keeping the cell healthy through mitochondrial quality control9. Upon the loss of mitochondrial membrane potential, cytosolic Parkin is recruited to the mitochondria by PINK1. This recruitment triggers the sequential events of mitophagy 10. There is a broad range of evidence that mitophagy is a fundamental mitochondria quality control process and abnormalities in this process drive disease 7. For instance, autosomal recessive Parkinson’s disease has been associated with mutations in the genes that encode for Parkin and PINK1 (PARK2 and PINK1, respectively) 11. The quality control of mitochondrial health is essential for the removal of mitochondria that contribute to the accumulation of ROS12. Excessive presence of intracellular ROS can lead to damage of both nuclear and mitochondrial DNA (DNA and mt DNA, respectively).

Herein, we show a time-lapse video microscopy approach to follow the aggregation of Parkin after the induction of Parkin-mediated mitophagy in immortalized mouse embryonic fibroblasts via in vitro administration of carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone (FCCP), an uncoupling agent. FCCP disrupts ATP synthesis by short circuiting protons across the outer mitochondria membrane and hence uncoupling oxidative phosphorylation from the electron transport chain 13. Triggering the depolarization of the mitochondrial membrane leads to the disruption of mitochondria and selective Parkin-dependent removal. Therefore, transfecting the cells of interest with an expression vector encoding Parkin fused with a fluorescent marker (enhanced yellow fluorescent protein, EYFP) can be used as a fluorescent tag to follow the recruitment of Parkin during the mitophagic process. In order to visualize the mitochondria, we co-transfected pDsRed2-Mito, which encodes red fluorescent protein (DsRed2) that contains a mitochondrial targeting sequence of cytochrome c oxidase subunit VIII (Mito). pDsRed2-Mito is designed for fluorescent labeling of mitochondria14. The time required for Parkin translocation into the mitochondrial membrane can be measured and gives an indirect measure of cellular health. For example, we can say that if a cell line knocked-out for a particular gene of interest shows either a faster or slower recruitment of Parkin after the induction of mitophagy by FCCP, that gene product would be a key player in order to keep the metabolic rates of the cell at the physiological status and prevent the development of diseases. Therefore, the time-lapse video microscopy provides a very powerful tool for both basic and clinical research applications in following the dynamic of labeled proteins during their molecular processes and understanding how these processes are affected during a pathological condition.

Protocol

1. elettroporazione di fibroblasti con entrambi vettori di espressione EYFP-Parkin e pDsRed2-Mito Far crescere le cellule di fibroblasti embrionali di topo immortalato su 10 centimetri piatto di tessuto-cultura con DMEM (modificata mezzo di Eagle di Dulbecco) medio supplementato con 10% di siero fetale bovino, 2 mmol / l L-glutammina, 100 U / ml di penicillina, e 100 mg / ml streptomicina in atmosfera umidificata contenente il 5% di CO 2 a 37 ° C. Alla confluenza cella 80%, scartare il me…

Representative Results

Qui, si mostra come il video time-lapse microscopia è una tecnica potente che può essere utilizzato per seguire gli eventi molecolari di proteine ​​fluorescenti-taggato in una singola cella. I risultati rappresentativi mostrano anche come questa tecnica permette l'acquisizione di immagini di alta qualità. Quando le immagini del processo molecolare, si ottengono, abbiamo la possibilità di analizzare in modi diversi. Qui, analizziamo l'intervallo di tempo tra l'inizio d…

Discussion

microscopia time-lapse può essere definita come la tecnica che si estende cellule vive da una singola osservazione in tempo per l'osservazione delle dinamiche cellulari per lunghi periodi di tempo. Questa metodologia è distinto da un semplice confocale microscopia cellule in vivo perché permette all'osservatore di identificare in tempo reale una singola proteina fluorescente-tag e seguire la sua dinamica all'interno di una singola cella vivo. Infatti, la microscopia confocale può facilmente identifica pr…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by NIH grants (1R01CA137494, R01CA132115, R01CA086072 to R.G.P.), the Kimmel Cancer Center NIH Cancer Center Core grant P30CA056036 (R.G.P.), a grant from the Breast Cancer Research Foundation, generous grants from the Dr. Ralph and Marian C. Falk Medical Research Trust (R.G.P.) and a grant from the Pennsylvania Department of Health (R.G.P.). In part this work was supported by an American Italian Cancer Foundation postdoctoral fellowship (G.D.) and Bioimaging Shared Resource of the Sidney Kimmel Cancer Center (NCI 5 P30 CA-56036).The Department specifically disclaims responsibility for an analysis, interpretations or conclusions. There are no conflicts of interest associated with this manuscript.

Materials

DMEM Corning Life Science 10-013-CV Pre-warm at +37 C before use
PHENOL-FREE DMEM Corning Life Science 17-205-CV Pre-warm at +37 C before use
FETAL BOVINE SERUM Sigma-Aldrich F2442 Pre-warm at +37 C before use
L-GLUTAMINE Gibco 25030 Pre-warm at +37 C before use
PENICILLIN/ STREPTOMYCIN Corning Life Science 30-002-CI Pre-warm at +37 C before use
EYFP-PARKIN EXPRESSION VECTOR Addgene 23955
pDsRed2-Mito EXPRESSION VECTOR Clontech 632421
NUCLEOFECTOR 2B DEVICE LONZA AAD-1001S
NUCLEOFECTOR FOR KIT R NIH/3T3 LONZA VCA-1001
ZEISS AXIOVERT 200M INVERTED MICROSCOPE CARL ZEISS
Carbonyl Cyanide 4-(trifluoromethoxy)-Phenylhydrazone (FCCP) Sigma-Aldrich C2920
MetaMorph Molecular Devices Experimental Builder
ImageJ National Institute of Health Experimental Builder

Riferimenti

  1. Youle, R. J., Narendra, D. P. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 12, 9-14 (2011).
  2. Zhi, X., Zhong, Q. Autophagy in cancer. F1000Prime Rep. 7, 18 (2015).
  3. Ding, W. X., Yin, X. M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 393, 547-564 (2012).
  4. Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8, 3-5 (2005).
  5. Kissova, I., Deffieu, M., Manon, S., Camougrand, N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem. 279, 39068-39074 (2004).
  6. Kubli, D. A., Gustafsson, A. B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 111, 1208-1221 (2012).
  7. Redmann, M., Dodson, M., Boyer-Guittaut, M., Darley-Usmar, V., Zhang, J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol. 53, 127-133 (2014).
  8. Di Sante, G., et al. Loss of sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays park2 translocation to mitochondria. Am J Pathol. 185, 266-279 (2015).
  9. Tanaka, A. Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett. 584, 1386-1392 (2010).
  10. Shiba-Fukushima, K., et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2, 1002 (2012).
  11. Trinh, J., Farrer, M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 9, 445-454 (2013).
  12. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem J. 417, 1-13 (2009).
  13. Heytler, P. G., Prichard, W. W. A new class of uncoupling agents–carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun. 7, 272-275 (1962).
  14. Karan, G., Yang, Z., Zhang, K. Expression of wild type and mutant ELOVL4 in cell culture: subcellular localization and cell viability. Mol Vis. 10, 248-253 (2004).
  15. Jin, S. M., Youle, R. J. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 125, 795-799 (2012).
  16. Kerr, M. C., et al. Visualisation of macropinosome maturation by the recruitment of sorting nexins. J Cell Sci. 119, 3967-3980 (2006).
  17. Edin, F., et al. 3-D gel culture and time-lapse video microscopy of the human vestibular nerve. Acta Otolaryngol. 134, 1211-1218 (2014).
  18. Ramsden, A. E., Mota, L. J., Munter, S., Shorte, S. L., Holden, D. W. The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles. Cell Microbiol. 9, 2517-2529 (2007).
  19. Meseguer, M., et al. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 98, 1481-1489 (2012).
  20. Campbell, A., et al. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online. 26, 477-485 (2013).
  21. Bingol, B., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 510, 370-375 (2014).
  22. Carroll, R. G., Hollville, E., Martin, S. J. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 9, 1538-1553 (2014).
  23. Batlevi, Y., La Spada, A. R. Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol Dis. 43, 46-51 (2011).
  24. Frank, M., et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta. 1823, 2297-2310 (2012).
  25. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P. H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841-845 (1982).
  26. Sugar, I. P., Neumann, E. Stochastic model for electric field-induced membrane pores. Electroporation. Biophys Chem. 19, 211-225 (1984).
  27. Lemasters, J. J. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol. 2, 749-754 (2014).
  28. Aggarwal, B. B., Quintanilha, A. T., Cammack, R., Packer, L. Damage to mitochondrial electron transport and energy coupling by visible light. Biochim Biophys Acta. 502, 367-382 (1978).
  29. Alexandratou, E., Yova, D., Handris, P., Kletsas, D., Loukas, S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci. 1, 547-552 (2002).
  30. Kim, I., Lemasters, J. J. Mitophagy selectively degrades individual damaged mitochondria after photoirradiation. Antioxid Redox Signal. 14, 1919-1928 (2011).
  31. Coutu, D. L., Schroeder, T. Probing cellular processes by long-term live imaging–historic problems and current solutions. J Cell Sci. 126, 3805-3815 (2013).
check_url/it/53657?article_type=t

Play Video

Citazione di questo articolo
Di Sante, G., Casimiro, M. C., Pestell, T. G., Pestell, R. G. Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy. J. Vis. Exp. (111), e53657, doi:10.3791/53657 (2016).

View Video