Summary

Udarbejdelse af Silicon nanotrådene Field-effekt Transistor for Kemiske og biosensorer Applications

Published: April 21, 2016
doi:

Summary

We describe key steps for biosensing by using polysilicon nanowire field-effect transistors, including the preparation of the device and the immobilization and confirmation of a DNA molecular probe on the nanowire surface, as well as conditions for DNA sensing.

Abstract

Surveillance using biomarkers is critical for the early detection, rapid intervention, and reduction in the incidence of diseases. In this study, we describe the preparation of polycrystalline silicon nanowire field-effect transistors (pSNWFETs) that serve as biosensing devices for biomarker detection. A protocol for chemical and biomolecular sensing by using pSNWFETs is presented. The pSNWFET device was demonstrated to be a promising transducer for real-time, label-free, and ultra-high-sensitivity biosensing applications. The source/drain channel conductivity of a pSNWFET is sensitive to changes in the environment around its silicon nanowire (SNW) surface. Thus, by immobilizing probes on the SNW surface, the pSNWFET can be used to detect various biotargets ranging from small molecules (dopamine) to macromolecules (DNA and proteins). Immobilizing a bioprobe on the SNW surface, which is a multistep procedure, is vital for determining the specificity of the biosensor. It is essential that every step of the immobilization procedure is correctly performed. We verified surface modifications by directly observing the shift in the electric properties of the pSNWFET following each modification step. Additionally, X-ray photoelectron spectroscopy was used to examine the surface composition following each modification. Finally, we demonstrated DNA sensing on the pSNWFET. This protocol provides step-by-step procedures for verifying bioprobe immobilization and subsequent DNA biosensing application.

Introduction

Silicon Nanotråd felteffekttransistorer (SNWFETs) har fordelene ved ultra-høj følsomhed og direkte elektriske reaktioner på opladning variation af miljøet. I n-type SNWFETs for eksempel, når en negativt (eller positivt) ladet molekyle nærmer sig silicium nanotrådene (SNW), de luftfartsselskaber i SNW er udtømte (eller ophobes). Følgelig ledningsevnen af SNWFET aftager (eller stigninger) 1. Derfor kan detekteres nogen ladet molekyle nær SNW overflade af SNWFET enhed. Vitale biomolekyler herunder enzymer, proteiner, nukleotider og mange molekyler på celleoverfladen er ladningsbærere og kan overvåges ved hjælp SNWFETs. Med passende modifikationer, især immobilisering af en biomolekylært sonde på SNW, kan en SNWFET udvikles til en etiket-fri biosensor.

Overvågning ved hjælp biomarkører er afgørende for diagnosticering af sygdomme. Som det fremgår af tabel 1, har flere undersøgelser brugt NWFET-baserede biosensorer til etiket-fri, ultra-high-følsomhed og påvisning i realtid af forskellige biologiske mål, herunder et enkelt virus 2, adenosintriphosphat og kinase binding 3, neuronale signaler 4, metalioner 5,6, bakterielle toksiner 7, dopamin 8, DNA 9-11, RNA 12,13, enzym- og kræft biomarkører 14-19, menneskelige hormoner 20, og cytokiner 21,22. Disse undersøgelser har vist, at NWFET-baserede biosensorer et virksomt detektering platform for en bred vifte af biologiske og kemiske arter i en opløsning.

I SNWFET-baserede biosensorer, det immobiliserede på SNW enhedens overflade probe genkender en specifik biotarget. Immobilisere en bioprobe normalt indebærer en række trin, og det er afgørende, at hvert skridt er korrekt udført for at sikre et velfungerende biosensoren. Forskellige teknikker er blevet udviklet til at analysere sverflade sammensætning, herunder X-ray photoelectron spectroscopy (XPS), ellipsometri, trykvinkel måling, atomic force mikroskopi (AFM), og scanningselektronmikroskopi (SEM). Metoder såsom AFM og SEM direkte bevis på bioprobe immobilisering på nanotrådene enhed, mens metoder som XPS, ellipsometri, og kontakt vinkel måling er afhængige af parallelle forsøg udført på andre lignende materialer. I denne rapport beskriver vi bekræftelsen af ​​hver ændring trin ved hjælp af to uafhængige metoder. XPS anvendes til at undersøge koncentrationen af ​​bestemte atomer på polysilicon wafers, og variationer i de elektriske egenskaber af anordningen måles direkte at bekræfte ladningen variation på SNW overflade. Vi beskæftiger DNA biosensorer ved hjælp polykrystallinske SNWFETs (pSNWFETs) som et eksempel for at illustrere denne protokol. Immobilisering af en DNA-probe på SNW overflade består af tre trin: gruppe modifikation amin på det native hydroxyl overflade SNW, aldehyde gruppe modifikation, og 5'-aminomodified DNA-probe immobilisering. Ved hver ændring trin, kan enheden direkte detektere variationen i ladningen af den funktionelle gruppe immobiliseret på SNW overflade, fordi overfladeladninger forårsage lokale grænsefladespændinger potentielle ændringer over porten dielektriske som ændrer kanal strøm og konduktans 1. Afgifter omgiver SNW overflade kan elektrisk modulere de elektriske egenskaber af pSNWFET enhed; derfor overfladeegenskaberne af den SNW spiller en afgørende rolle i fastlæggelsen af ​​de elektriske karakteristika af pSNWFET enheder. I de rapporterede procedurer kan immobilisering af en bioprobe på SNW overflade bestemmes direkte og bekræftet gennem elektrisk måling, og anordningen er forberedt til biosensorer applikationer.

Protocol

1. Fabrikation og Bevarelse af pSNWFET Devices enhed Fabrication Bemærk: Den pSNWFET blev fremstillet ved hjælp af en sidevæg spacer teknik som tidligere rapporteret 23,24. Forbered porten dielektriske lag. Cap en 100-nm-tyk termisk oxid (SiO2) lag på et Si-substrat ved hjælp af våd oxidation proces 25 (O2 og H2 procesgas ved 980 ° C i 4 timer). Deponere en 50-nm-tykke nitrid (Si 3N <su…

Representative Results

Forskellige SNWFETs er blevet rapporteret til at tjene som transducere af biosensorer (tabel 1). Single-krystallinske SNWFETs (sSNWFETs) og pSNWFETs viser sammenlignelige elektriske egenskaber som transducere i vandige opløsninger, og begge er blevet rapporteret at have mange biosensorer applikationer. Et fordelagtigt træk ved pSNWFET anordning, der anvendes i denne undersøgelse er dens enkle og billige fabrikation procedure. Figur 1A viser de vigtigs…

Discussion

Kommercialisering af top-down og bottom-up fremstilling tilgange til sSNWFETs anses vanskelig på grund af omkostningerne 32,33, SNW position kontrol 34,35, og dens lave produktion skala 36. Derimod fremstilling pSNWFETs er enkel og billig 37. Gennem top-down tilgang og kombination med sidevæggen spacer dannelse teknik (figur 1), kan størrelsen af SNW kontrolleres ved at justere varigheden af reaktiv plasmaætsning. Procedurerne for udarbejdelse af nanotråd…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was financially supported by Ministry of Science and Technology, Taiwan (104-2514-S-009 -001, 104-2627-M-009-001 and 102-2311-B-009-004-MY3). We thank the National Nano Device Laboratories (NDL) for its valuable assistance during device fabrication and analysis.

Materials

Acetone ECHO AH-3102
(3-Amonopropyl)triethoxysilane (APTES), ≥98% Sigma-Aldrich A3648 Danger
Ethanol, anhydrous, 99.5% ECHO 484000203108A-72EC
Glutaraldehyde solution (GA), 50% Sigma-Aldrich G7651 Avoid light
Sodium cyanoborohydride, ≥95.0%  Fluka 71435 Danger and deliquescent
Sodium phosphate tribasic dodecahydrate, ≥98% Sigma 04277
Phosphoric acid, ≥99.0% Fluka 79622 Deliquescent
Photoresist (iP3650) Tokyo Ohka Kogyo Co., LTD THMR-iP3650 HP
Synthetic oligonucleotides, HPLC purified Protech Technology
Tris(hydroxymethyl)aminomethane (Tris), ≥99.8% USB 75825
Keithley 2636 System SourceMeter Keithley
SR830 DSP Lock-In Amplifier Stanford Research Systems
SR570 Low-noise Current Preamplifier Stanford Research Systems
Ni PXI Express National Instruments

Riferimenti

  1. Lin, C. H., et al. Surface composition and interactions of mobile charges with immobilized molecules on polycrystalline silicon nanowires. Sensor Actuat B-Chem 211. 211, 7-16 (2015).
  2. Patolsky, F., et al. Electrical detection of single viruses. P Natl Acad Sci USA. 101, 14017-14022 (2004).
  3. Wang, W. U., Chen, C., Lin, K. H., Fang, Y., Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. P Natl Acad Sci USA. 102, 3208-3212 (2005).
  4. Patolsky, F., et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science. 313, 1100-1104 (2006).
  5. Bi, X., et al. Development of electrochemical calcium sensors by using silicon nanowires modified with phosphotyrosine. Biosens Bioelectron. 23, 1442-1448 (2008).
  6. Lin, T. W., et al. Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. P Natl Acad Sci USA. 107, 1047-1052 (2010).
  7. Mishra, N. N., et al. Ultra-sensitive detection of bacterial toxin with silicon nanowire transistor. Lab on a chip. 8, 868-871 (2008).
  8. Lin, C. H., et al. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun. , 5749-5751 (2008).
  9. Hahm, J., Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51-54 (2004).
  10. Lin, C. H., et al. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosens Bioelectron. 24, 3019-3024 (2009).
  11. Wu, C. C., et al. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron. 25, 820-825 (2009).
  12. Zhang, G. -. J., et al. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensor Actuat B-Chem. 146, 138-144 (2010).
  13. Lu, N., et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small. 10, 2022-2028 (2014).
  14. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 23, 1294-1301 (2005).
  15. Choi, J. H., Kim, H., Choi, J. H., Choi, J. W., Oh, B. K. Signal enhancement of silicon nanowire-based biosensor for detection of matrix metalloproteinase-2 using DNA-Au nanoparticle complexes. ACS Appl Mater Interfaces. 5, 12023-12028 (2013).
  16. Lin, T. Y., et al. Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening. Lab Chip. 13, 676-684 (2013).
  17. Chen, H. C., et al. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron. 66, 198-207 (2015).
  18. Lee, H. S., Kim, K. S., Kim, C. J., Hahn, S. K., Jo, M. H. Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens Bioelectron. 24, 1801-1805 (2009).
  19. Chua, J. H., Chee, R. E., Agarwal, A., Wong, S. M., Zhang, G. J. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem. 81, 6266-6271 (2009).
  20. Lu, N., et al. Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays. ACS Appl Mater Interfaces. 6, 20378-20384 (2014).
  21. Chen, H. C., et al. Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis. Anal Chem. 86, 9443-9450 (2014).
  22. Zhang, Y. L., et al. Silicon Nanowire Biosensor for Highly Sensitive and Multiplexed Detection of Oral Squamous Cell Carcinoma Biomarkers in Saliva. Anal Sci. 31, 73-78 (2015).
  23. Lin, H. C., et al. A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel. Ieee Electr Device L. 26, 643-645 (2005).
  24. Lin, H. C., Lee, M. H., Su, C. J., Shen, S. W. Fabrication and characterization of nanowire transistors with solid-phase crystallized poly-Si channels. Ieee T Electron Dev. 53, 2471-2477 (2006).
  25. Doering, R., Nishi, Y. . Handbook of semiconductor manufacturing technology. , (2008).
  26. Lu, M. P., Hsiao, C. Y., Lai, W. T., Yang, Y. S. Probing the sensitivity of nanowire-based biosensors using liquid-gating. Nanotechnology. 21 (425505), (2010).
  27. Gaspar, J., et al. Digital lock in amplifier: study, design and development with a digital signal processor. Microprocess Microsy. 28, 157-162 (2004).
  28. Vezenov, D. V., Noy, A., Rozsnyai, L. F., Lieber, C. M. Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J Am Chem Soc. 119, 2006-2015 (1997).
  29. Townsend, M. B., et al. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance. J Clin Microbiol. 44, 2863-2871 (2006).
  30. Wang, L. C., et al. Simultaneous detection and differentiation of Newcastle disease and avian influenza viruses using oligonucleotide microarrays. Vet Microbiol. 127, 217-226 (2008).
  31. Lin, C. -. H., et al. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA. Jpn J Appl Phys. 51 (02BL02), (2012).
  32. Lee, K. N., et al. Well controlled assembly of silicon nanowires by nanowire transfer method. Nanotechnology. 18 (445302), (2007).
  33. Li, Z., et al. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4, 245-247 (2004).
  34. McAlpine, M. C., et al. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531-1535 (2003).
  35. Cui, Y., Wei, Q., Park, H., Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293, 1289-1292 (2001).
  36. Patolsky, F., Zheng, G., Lieber, C. M. Nanowire-based biosensors. Anal Chem. 78, 4260-4269 (2006).
  37. Hsiao, C. Y., et al. Novel poly-silicon nanowire field effect transistor for biosensing application. Biosens Bioelectron. 24, 1223-1229 (2009).
check_url/it/53660?article_type=t

Play Video

Citazione di questo articolo
Wu, J. Y., Lin, C., Feng, M., Chen, C., Su, P., Yang, P., Zheng, J., Fu, C., Yang, Y. Preparation of Silicon Nanowire Field-effect Transistor for Chemical and Biosensing Applications. J. Vis. Exp. (110), e53660, doi:10.3791/53660 (2016).

View Video