Summary

铱氧化物纳米颗粒对硒化镉硫化镉@纳米棒光化学氧化增长

Published: February 11, 2016
doi:

Summary

A protocol for the photochemical oxidative growth of small crystalline iridium oxide nanoparticles on the surface of CdSe@CdS seeded rod nanoparticles is presented.

Abstract

We demonstrate a procedure for the photochemical oxidative growth of iridium oxide catalysts on the surface of seeded cadmium selenide-cadmium sulfide (CdSe@CdS) nanorod photocatalysts. Seeded rods are grown using a colloidal hot-injection method and then moved to an aqueous medium by ligand exchange. CdSe@CdS nanorods, an iridium precursor and other salts are mixed and illuminated. The deposition process is initiated by absorption of photons by the semiconductor particle, which results with formation of charge carriers that are used to promote redox reactions. To insure photochemical oxidative growth we used an electron scavenger. The photogenerated holes oxidize the iridium precursor, apparently in a mediated oxidative pathway. This results in the growth of high quality crystalline iridium oxide particles, ranging from 0.5 nm to about 3 nm, along the surface of the rod. Iridium oxide grown on CdSe@CdS heterostructures was studied by a variety of characterization methods, in order to evaluate its characteristics and quality. We explored means for control over particle size, crystallinity, deposition location on the CdS rod, and composition. Illumination time and excitation wavelength were found to be key parameters for such control. The influence of different growth conditions and the characterization of these heterostructures are described alongside a detailed description of their synthesis. Of significance is the fact that the addition of iridium oxide afforded the rods astounding photochemical stability under prolonged illumination in pure water (alleviating the requirement for hole scavengers).

Introduction

光催化提出了可再生能源发电和其他环境的应用,如水处理和空气净化1-3的吸引力和有前景的解决方案。总体水分解,利用太阳能驱动,可能是清洁和可再生氢燃料的来源;然而,尽管数十年的研究,这是足够稳定和有效的,对实际使用的系统尚未实现。

既光化学淀积和半导体介导的光催化依靠分离光生电子 – 空穴对,并将它们驱动到表面在那里他们可以引发氧化还原反应的相同的机制。这两个过程之间的相似性使得光化学淀积为光催化4-6领域一个有吸引力的合成工具。这种方法有望采取光触媒生产新的未知领域。这也许可能提供纯净的控制空间布局在异质结构的不同组件,以及前进到构造复杂的纳米颗粒系统的能力。最终,该方法将使我们更接近了一步实现直接太阳能到燃料能量转换的高效光催化剂。

我们研究的IrO 2的生长作为助催化剂,因为它是已知可用于水氧化7-11的高效催化剂。嵌入在杆(硫化镉)12,13量子点(硒化镉)的可调结构作为我们的光触媒基板14,15。它是目前待定是否经由介导的途径发生氧化途径,或通过直接孔攻击。在这里,我们对半导体异质结构的光生空穴了解和控制,可以用来达到氧化反应的机理研究。这是通过在衬底结构,这有利于密闭小孔16,17和地层的本地化成为可能在杆不同的氧化反应部位。纳米材料的局限性电荷载体的使用可以利用用于由产品的简单检查的氧化还原反应的机理研究。以这种方式光化学淀积可以用作两个还原和氧化反应途径的独特探针。这是通过光化学淀积和尖端胶体合成18-20的结合所带来的新的和令人兴奋的可能性的一个例子。

制定水分解和可再生能源转化的高效催化剂的追求已成为材料界的重要推力。这促使在硫化镉世界范围的兴趣,这是已知的生产氢的高活性,尽管它是由光化学不稳定的阻碍。我们这里的工作把材料的阿喀琉斯之踵。 2的IrO装饰的CdSe @硫化镉棒展示纯延长光照下显着的光化学稳定性水。

Protocol

1.量子点21的合成 TOP的制备:Se前体在用隔膜小瓶结合58毫克硒粉末与0.360克三正辛基膦(TOP)中。 超声振荡顶部:硒混合物,直到它是一个没有明确的固体。 硒化镉的合成结合3.0克三辛基氧化膦(TOPO),280毫克正 – 十八烷基酸(ODPA),和60毫克的CdO在装有热电偶25毫升三颈圆底烧瓶3毫米×8 mm的圆柱形搅拌棒(插入定制玻璃适配器),回流冷凝器?…

Representative Results

透射电子显微照片(TEM),以看到氧化铱的上引晶棒(图1)的分布收集。 TEM样品通过吹打溶解颗粒的下降到TEM网格制备。 X射线衍射(XRD, 图2)和 X射线光电子能谱(XPS,图3)被用来表征观察的生长结晶的IrO 2的混合和铱2 O 3等。 X射线衍射和XPS的样品的制备是通过在载玻片上的粒子的干燥完成。用足够的采?…

Discussion

硒化镉种子和硒化镉硫化镉@播种棒的合成已得到很好的研究21,24,25。轻微的修改的量,温度和时间对这些基材颗粒的合成的步骤可用于调整其长度,直径和/或形态。本文所描述的合成方案产生均匀尺寸的高度发光种子棒。

该配体交换过程允许使用在极性环境中接种棒,在这种情况下的水。在配体交换,当正在收集溶解丸粒(由甲苯沉淀后)的最终阶段的沉淀往往较?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由计划和预算委员会和以色列科学基金会(批准号:十一分之一百五十二)的I-CORE项目的支持。我们感谢化学的Schulich商学院与Technion工业 – 以色列理工学院的实验室装修和启动包。我们也感谢皇家化学学会的许可,从http://dx.doi.org/10.1039/C4TA06164K适应材料在这个手稿中使用。 Kalisman博士感谢他们的支持Schulich商博士后研究。我们感谢亚龙考夫曼博士为他的HR-TEM和HAADF以及Kamira Weinfeld博士协助她与XPS表征援助。

Materials

Sulfur (S) Sigma 84683
Selenium (Se) Sigma 229865
Cadmium Oxide (CdO) Sigma 202894 Highly Toxic
n-Octadecylphosphonic acid (ODPA) Sigma 715166
Propylphosphonic acid (PPA) Sigma 305685 Highly regulated in some countries and regions
Butylphosphonic acid (BPA) Sigma 737933 Alternative to PPA
Hexylphosphonic acid (HPA) Sigma 750034 Alternative to PPA
Trioctylphosphonic oxide (TOPO) Sigma 346187
Tri-n-octylphosphine, 97% (TOP) Sigma 718165 Air sensitive
Spectrochemical Stirbar Sigma Z363545
Sodium Hydroxide Sigma S5881
Methanol Sigma 322415
Toluene Sigma 244511
Hexane Sigma 296090
Octylamine Sigma 74988
Nonanoic Acid Sigma N5502
Isopropanol Sigma 278475
Mercaptoundecanoic Acid (MUA) Sigma 674427
Tetramethylammonium Hydroxide (TMAH) Sigma T7505
Apiezon H Grease (high temperature grease) Sigma Z273562
Sodium Persulfate Sigma 216232
Sodium Nitrate Sigma 229938
Sodium Hexachloroiridate(III) hydrate Sigma 288160
Mounted 455nm LED Thorlabs M455L3
Cuvette Holder Thorlabs CVH100
25mL 3-neck Round Bottom Flask Chemglass CG-1524-A-02
Liebig Condensor Chemglass CG-1218-A-20
T-Joint Adapter Chemglass AF-0509-10

Riferimenti

  1. Maeda, K., et al. Photocatalyst releasing hydrogen from water. Nature. 440 (7082), 295-295 (2006).
  2. Jacobson, M. Z., Colella, W. G., Golden, D. M. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles. Science. 308 (5730), 1901-1905 (2005).
  3. Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95 (1), 69-96 (1995).
  4. Dukovic, G., Merkle, M. G., Nelson, J. H., Hughes, S. M., Alivisatos, A. P. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures. Adv. Mater. 20 (22), 4306-4311 (2008).
  5. Menagen, G., Macdonald, J. E., Shemesh, Y., Popov, I., Banin, U. Au Growth on Semiconductor Nanorods: Photoinduced versus Thermal Growth Mechanisms. J. Am. Chem. Soc. 131 (47), 17406-17411 (2009).
  6. Alemseghed, M. G., Ruberu, T. P. A., Vela, J. Controlled Fabrication of Colloidal Semiconductor-Metal Hybrid Heterostructures: Site Selective Metal Photo Deposition. Chem. Mater. 23 (15), 3571-3579 (2011).
  7. Frame, F. A., et al. Photocatalytic Water Oxidation with Nonsensitized IrO2 Nanocrystals under Visible and UV Light. J. Am. Chem. Soc. 133 (19), 7264-7267 (2011).
  8. Iwase, A., Kato, H., Kudo, A. A Novel Photodeposition Method in the Presence of Nitrate Ions for Loading of an Iridium Oxide Cocatalyst for Water Splitting. Chemistry Letters. 34 (7), 946-947 (2005).
  9. Kalisman, P., Kauffmann, Y., Amirav, L. Photochemical oxidation on nanorod photocatalysts. J. Mater. Chem. 3 (7), 3261-3265 (2015).
  10. Ryu, W. H., et al. Crystalline IrO2-decorated TiO2 nanofiber scaffolds for robust and sustainable solar water oxidation. J. Mater. Chem. A. 2 (16), 5610-5615 (2014).
  11. Nakagawa, T., Bjorge, N. S., Murray, R. W. Electrogenerated IrOx Nanoparticles as Dissolved Redox Catalysts for Water Oxidation. J. Am. Chem. Soc. 131 (43), 15578-15579 (2009).
  12. Talapin, D. V., et al. Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies. Nano Lett. 7 (10), 2951-2959 (2007).
  13. Carbone, L., et al. Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Lett. 7 (10), 2942-2950 (2007).
  14. Amirav, L., Alivisatos, A. P. Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. J. Phys. Chem. Lett. 1 (7), 1051-1054 (2010).
  15. Nakibli, Y., Kalisman, P., Amirav, L. Less Is More: The Case of Metal Cocatalysts. J. Phys. Chem. Lett. 6, 2265-2268 (2015).
  16. Lupo, M. G., et al. Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals. Nano Lett. 8 (12), 4582-4587 (2008).
  17. Raino, G., et al. Probing the Wave Function Delocalization in CdSe/CdS Dot-in-Rod Nanocrystals by Time- and Temperature-Resolved Spectroscopy. ACS Nano. 5 (5), 4031-4036 (2011).
  18. Talapin, D. V., Lee, J. S., Kovalenko, M. V., Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 110 (1), 389-458 (2010).
  19. Kraus, R. M., et al. Room-Temperature Exciton Storage in Elongated Semiconductor Nanocrystals. Phys. Rev. Lett. 98 (1), 017401 (2007).
  20. She, C., Demortière, A., Shevchenko, E. V., Pelton, M. Using Shape to Control Photoluminescence from CdSe/CdS Core/Shell Nanorods. J. Phys. Chem. Lett. 2 (12), 1469-1475 (2011).
  21. Manthiram, K., Beberwyck, B. J., Talapin, D. V., Alivisatos, A. P. Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals. J. Vis. Exp. (82), (2013).
  22. Yu, W. W., Qu, L., Guo, W., Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 15 (14), 2854-2860 (2003).
  23. Miao, M. S., Seshadri, R. Rh2O3 versus IrO2: relativistic effects and the stability of Ir4. J. Phys. Condens. Matter. 24 (21), 215503 (2012).
  24. Amirav, L., Alivisatos, A. P. Luminescence Studies of Individual Quantum Dot Photocatalysts. J. Am. Chem. Soc. 135 (35), 13049-13053 (2013).
  25. Vaneski, A., Schneider, J., Susha, A. S., Rogach, A. L. Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation. APL Materials. 2 (1), 012104 (2014).
check_url/it/53675?article_type=t

Play Video

Citazione di questo articolo
Kalisman, P., Nakibli, Y., Amirav, L. Photochemical Oxidative Growth of Iridium Oxide Nanoparticles on CdSe@CdS Nanorods. J. Vis. Exp. (108), e53675, doi:10.3791/53675 (2016).

View Video