Summary

HSV-mediata Transgene Espressione di chimerici costrutti di studio comportamentale funzione di GPCR Heteromers nei topi

Published: July 09, 2016
doi:

Summary

Questo articolo viene descritto come iniettare vettori virali nel mouse corteccia frontale per testare test comportamentali che richiedono la formazione eteromerico GPCR.

Abstract

The heteromeric receptor complex between 5-HT2A and mGlu2 has been implicated in some of the behavioral phenotypes in mouse models of psychosis1,2. Consequently, investigation of structural details of the interaction between 5-HT2A and mGlu2 affecting schizophrenia-related behaviors represents a powerful translational tool. As previously shown, the head-twitch response (HTR) in mice is elicited by hallucinogenic drugs and this behavioral response is absent in 5-HT2A knockout (KO) mice3,4. Additionally, by conditionally expressing the 5-HT2A receptor only in cortex, it was demonstrated that 5-HT2A receptor-dependent signaling pathways on cortical pyramidal neurons are sufficient to elicit head-twitch behavior in response to hallucinogenic drugs3. Finally, it has been shown that the head-twitch behavioral response induced by the hallucinogens DOI and lysergic acid diethylamide (LSD) is significantly decreased in mGlu2-KO mice5. These findings suggest that mGlu2 is at least in part necessary for the 5-HT2A receptor-dependent psychosis-like behavioral effects induced by LSD-like drugs. However, this does not provide evidence as to whether the 5-HT2A-mGlu2 receptor complex is necessary for this behavioral phenotype. To address this question, herpes simplex virus (HSV) constructs to express either mGlu2 or mGlu2ΔTM4N (mGlu2/mGlu3 chimeric construct that does not form the 5-HT2A-mGlu2 receptor complex) in the frontal cortex of mGlu2-KO mice were used to examine whether this GPCR heteromeric complex is needed for the behavioral effects induced by LSD-like drugs6.

Introduction

Allucinogeni, come l'LSD, psilocibina e mescalina provocano significativi cambiamenti nella coscienza umana, cognizione ed emozione 7-9. L'inattivazione della serotonina 5-HT 2A recettore segnalazioni da approcci sia genetici o farmacologici cause notevolmente attenuato le risposte comportamentali a allucinogeni in entrambi i modelli di roditori 3,10 e gli esseri umani 11. Anche se allucinogeni legano altri sottotipi di recettori 8, il recettore 5-HT 2A è considerato come necessario per l'attività comportamentale unica di queste sostanze chimiche.

Gruppo II recettori metabotropici del glutammato (es., MGlu2 e mGlu3) sono stati oggetto di considerevole attenzione per quanto riguarda il meccanismo molecolare di allucinogeni e il loro ruolo fondamentale sottostante psicosi 12. In precedenza, è stato dimostrato che topi con nessuna espressione di proteine ​​mGlu2 (topi mGlu2-KO) sono insensibili agli effetti cellulari e comportamentali di hallucinogens 5. È stato anche suggerito che la 5-HT 2A e recettori mGlu2 formano un complesso specifico eteromerico attraverso cui serotonina e glutammato ligandi modulano il modello dell'accoppiamento proteina G nelle cellule viventi 1,2.

Strutturalmente, transmembrana (TM) domini 4 e 5 di mGlu2 giocano un ruolo fondamentale nella formazione eteromerico con la 5-HT 2A recettore 5. Inoltre, ulteriori indagini hanno dimostrato che tre residui si trovano alla fine intracellulare di TM4 di mGlu2 sono necessari per formare il 5-HT 2A -mGlu2 recettore eterocomplesso nelle cellule viventi 6.

Sulla base di questi risultati osservati in sistemi di espressione eterologa, qui si descrive l'uso di espressione HSV-mediata di tipo selvaggio mGlu2 e mGlu2 / mGlu3 costrutti chimerici nella corteccia frontale di topi mGlu2-KO per verificare se la formazione eteromerico tra 5-HT 2A e mGlu2 è necessario per ilcomportamento testa contrazione indotta da allucinogeni 5-HT 2A agonisti del recettore.

Protocol

NOTA: Tutte le procedure per l'allevamento degli animali e le cure sono state condotte secondo la norma istituzionale cura e l'uso Comitato Animal (IACUC) di Icahn Scuola di Medicina Mount Sinai. Assicurarsi di utilizzare guanti sterili durante tutta la procedura. 1. droga e Virus Preparazione Drug Preparazione Preparare 15,0 ml di ketamina / xilazina anestetico sciogliendo 1,35 ml di 100 mg / ml ketamina e 0,75 ml di 20 mg / xilazina ml in 12,9 ml di 0,9% di soluzion…

Representative Results

Precedenti risultati dimostrano che la testa a contrazione risposta comportamentale murino è affidabile e robusto suscitata da allucinogeni, ed è assente in 5-HT 2A topi -Ko 3. Inoltre, è stato dimostrato che la risposta testa contrazione provocata dai allucinogeni 5-HT 2A agonisti DOI e LSD era significativamente diminuita in mGlu2-KO topi 5. Tuttavia, anche se i risultati precedenti dimostrano che convincente 2A 5-HT e mGlu2 son…

Discussion

Insieme con i precedenti risultati in mGlu2-KO topi 5, i risultati con mGlu2 e mGlu2 / mGlu3 costrutti chimerici che non formano la 5-HT complesso recettoriale 2A -mGlu2 in cellule in coltura suggeriscono che la 2A 5-HT -mGlu2 eteromerico complesso recettoriale in topo corteccia frontale è necessario per indurre comportamenti testa contrazione da allucinogeni 5-HT 2A agonisti del recettore LSD-like. Una limitazione di questo metodo è che non misura prossimità molecolare a l…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

NIH R01MH084894 partecipato al finanziamento di questo studio. Vorremmo ringraziare il Dott. Yasmin Hurd e Scott Russo al Mount Sinai School of Medicine per la donazione di topi e l'uso dei loro chirurgia e comportamento strutture durante le riprese di questo lavoro.

Materials

mGlu2 bicitronic herpes simplex virus (HSV) vector  MIT Core mGlu2 and mGlu2DTM4N were subcloned into the bicistronic HSV-GFP virus vector p1005+ HSV expressing GFP under the control of the CMV promoter. Viral particles were produced by the Viral Core Facility at the McGovern Institute (MIT). For more information, please contact the director, Dr. Rachael Neve (rneve@mit.edu)
mGlu2ΔTM4N bicitronic herpes simplex virus (HSV) vector  MIT Core mGlu2 and mGlu2DTM4N were subcloned into the bicistronic HSV-GFP virus vector p1005+ HSV expressing GFP under the control of the CMV promoter. Viral particles were produced by the Viral Core Facility at the McGovern Institute (MIT). For more information, please contact the director, Dr. Rachael Neve (rneve@mit.edu)
GFP bicitronic herpes simplex virus (HSV) vector  MIT Core mGlu2 and mGlu2DTM4N were subcloned into the bicistronic HSV-GFP virus vector p1005+ HSV expressing GFP under the control of the CMV promoter. Viral particles were produced by the Viral Core Facility at the McGovern Institute (MIT). For more information, please contact the director, Dr. Rachael Neve (rneve@mit.edu)
xylazine  Lloyd List no. 4811-20ml, NADA #139-236, NDC Code(s): 61311-481-10 1.35 mL of 100mg/ml of ketamine+.75 mL of 20mg/ml of xylazine are diluted in 12.0 mL of .9% saline solution
ketamine  Vedco KetaVed-10ml, NADA #200-029, NDC Code(s): 50989-161-06 1.35 mL of 100mg/ml of ketamine+.75 mL of 20mg/ml of xylazine are diluted in 12.0 mL of .9% saline solution
ophthalmic gel Fisher Scientific NC0550805
burret clips Fisher Scientific NC9268369
Feather surgical blade Fisher Scientific NC9032736
Hydrogen Peroxide Fisher Scientific 19-898-919 
Hamilton syringe Fisher Scientific 14815203
Hamilton™ Small Hub Removable Needles (33 Ga) Fisher Scientific 14816206
Cordless Micro Drill Fisher Scientific NC9089241
Dermabond Dermal Adhesive Fisher Scientific NC0690470
(±)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) Sigma-Aldrich 42203-78-1 Dissolved in .9% saline solution to the concentration of 2.0 mg/kg

Riferimenti

  1. Fribourg, M. et al. Decoding the Signaling of a GPCR Heteromeric Complex Reveals a Unifying Mechanism of Action of Antipsychotic Drugs. Cell. 147 (5), 1011-1023 (2011).
  2. Gonzalez-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 452 (7183), 93-97 (2008).
  3. Gonzalez-Maeso, J. et al. Hallucinogens Recruit Specific Cortical 5-HT(2A) Receptor-Mediated Signaling Pathways to Affect Behavior. Neuron. 53 (3), 439-452 (2007).
  4. Gonzalez-Maeso, J. et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 23 (26), 8836-8843 (2003).
  5. Moreno, J. L., Holloway, T., Albizu, L., Sealfon, S. C., & Gonzalez-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 493 (3), 76-79 (2011).
  6. Moreno, J. L. et al. Identification of Three Residues Essential for 5-HT2A-mGlu2 Receptor Heteromerization and its Psychoactive Behavioral Function. J Biol Chem. 287 44301-44319 (2012).
  7. Geyer, M. A., & Vollenweider, F. X. Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci. 29 (9), 445-453 (2008).
  8. Nichols, D. E. Hallucinogens. Pharmacol Ther. 101 (2), 131-181 (2004).
  9. Hanks, J. B., & Gonzalez-Maeso, J. Animal models of serotonergic psychedelics. ACS Chem Neurosci. 4 (1), 33-42 (2013).
  10. Fiorella, D., Rabin, R. A., & Winter, J. C. Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: Reassessment of LSD false positives. Psychopharmacology (Berl). 121 (3), 357-363 (1995).
  11. Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Babler, A., Vogel, H., & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 9 (17), 3897-3902 (1998).
  12. Moreno, J. L., Sealfon, S. C., & Gonzalez-Maeso, J. Group II metabotropic glutamate receptors and schizophrenia. Cell Mol Life Sci. 66 (23), 3777-3785 (2009).
  13. Kurita, M. et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 15 (9), 1245-1254 (2012).
  14. Kurita, M. et al. Repressive Epigenetic Changes at the mGlu2 Promoter in Frontal Cortex of 5-HT2A Knockout Mice. Mol Pharmacol. 83 (6), 1166-1175 (2013).
  15. Rives, M. L. et al. Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. Embo J. 28 (15), 2195-2208 (2009).
  16. Milligan, G. The Prevalence, Maintenance and Relevance of GPCR Oligomerization. Mol Pharmacol. Epub ahead of print (84), 158-169 (2013).
  17. Ferre, S. et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 66 (2), 413-434 (2014).
  18. Gonzalez-Maeso, J. GPCR oligomers in pharmacology and signaling. Mol Brain. 4 (1), 20 (2011).
  19. Gonzalez-Maeso, J. Family a GPCR heteromers in animal models. Front Pharmacol. 5 226 (2014).
  20. Dragulescu-Andrasi, A., Chan, C. T., De, A., Massoud, T. F., & Gambhir, S. S. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proceedings of the National Academy of Sciences of the United States of America. 108 (29), 12060-12065 (2011).
  21. Calebiro, D. et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A. 110 (2), 743-748 (2013).
  22. Fonseca, J. M., & Lambert, N. A. Instability of a class a G protein-coupled receptor oligomer interface. Mol Pharmacol. 75 (6), 1296-1299 (2009).
  23. Hern, J. A. et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A. 107 (6), 2693-2698 (2010).
  24. Hlavackova, V. et al. Sequential inter- and intrasubunit rearrangements during activation of dimeric metabotropic glutamate receptor 1. Sci Signal. 5 (237), ra59 (2012).
  25. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature. 495 (7442), 534-538 (2013).
  26. Calebiro, D., Nikolaev, V. O., Persani, L., & Lohse, M. J. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci. 31 (5), 221-228 (2010).
  27. Celada, P., Puig, M. V., Diaz-Mataix, L., & Artigas, F. The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry. 64 (5), 392-400 (2008).
  28. Imad, M., Mladenovic, L., Gingrich, J. A., & Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America. 104 (23), 9870-9875 (2007).
check_url/it/53717?article_type=t

Play Video

Citazione di questo articolo
Holloway, T., Moreno, J. L., González-Maeso, J. HSV-Mediated Transgene Expression of Chimeric Constructs to Study Behavioral Function of GPCR Heteromers in Mice. J. Vis. Exp. (113), e53717, doi:10.3791/53717 (2016).

View Video