Summary

LC-MS analyse af humane blodplader som en platform for at studere Mitokondriel Metabolism

Published: April 04, 2016
doi:

Summary

Her viser vi isolerede humane blodplader kan anvendes som en tilgængelig ex vivo-model til at studere metaboliske tilpasninger som reaktion på komplekset I inhibitoren rotenon. Denne fremgangsmåde anvender isotopisk sporing og relativ kvantificering ved væskekromatografi-massespektrometri og kan anvendes til en række af undersøgelsestyper.

Abstract

Perturbed mitochondrial metabolism has received renewed interest as playing a causative role in a range of diseases. Probing alterations to metabolic pathways requires a model in which external factors can be well controlled, allowing for reproducible and meaningful results. Many studies employ transformed cellular models for these purposes; however, metabolic reprogramming that occurs in many cancer cell lines may introduce confounding variables. For this reason primary cells are desirable, though attaining adequate biomass for metabolic studies can be challenging. Here we show that human platelets can be utilized as a platform to carry out metabolic studies in combination with liquid chromatography-tandem mass spectrometry analysis. This approach is amenable to relative quantification and isotopic labeling to probe the activity of specific metabolic pathways. Availability of platelets from individual donors or from blood banks makes this model system applicable to clinical studies and feasible to scale up. Here we utilize isolated platelets to confirm previously identified compensatory metabolic shifts in response to the complex I inhibitor rotenone. More specifically, a decrease in glycolysis is accompanied by an increase in fatty acid oxidation to maintain acetyl-CoA levels. Our results show that platelets can be used as an easily accessible and medically relevant model to probe the effects of xenobiotics on cellular metabolism.

Introduction

Dysfunktionel mitochondrial metabolisme er blevet impliceret i en lang række sygdomme, herunder neurodegeneration, kræft og hjertekarsygdomme 30. Som sådan har stor indsats blevet placeret på karakterisering metaboliske defekter, der bidrager til sygdommen patogenese. Væskekromatografi-tandem massespektrometri (LC-MS / MS) betragtes som den gyldne standard for kvantificering af analytter fra komplekse biologiske matricer og er ofte ansat til metaboliske undersøgelser 8. Men som det ofte er tilfældet med biomedicinske undersøgelser, opnå en tilgængelig og veldefineret model relevant for human sygdom er en udfordring.

Mange undersøgelser beskæftiger forvandlet cellulære modeller til sondering af virkningen af miljøfremmede stoffer eller genetiske abnormiteter på cellulær metabolisme 7,9. Den metaboliske omprogrammering, der forekommer i cancerceller kan introducere forstyrrende faktorer 21 og er derfor ikke ideel. Disse spørgsmål kan være circumvented med primære celle modeller, selv om at opnå tilstrækkelig biomasse til metaboliske analyser kan være udfordrende. Endvidere har effekten af høje mængder af antibiotika, der anvendes i kultur blevet fremhævet som potentielt confounding mitokondrie undersøgelser 16.

Humane blodplader opnåelse af muligheden for at udnytte en primær celle model med tilstrækkelig mitokondrie indhold til metaboliske undersøgelser 5,22,27,32. Først kan blodplader let erhverves gennem blod trækker fra individuelle donorer, eller i store mængder fra blodbanker, og giver derfor en model, hvor eksterne faktorer kan let kontrolleres. For det andet på grund af deres lille størrelse, blodplader kan let isoleres fra andre blodkomponenter med minimal forberedende arbejde i selv minimalt udstyrede laboratorier 5. Af note, behøver blodplader ikke indeholde kerner og kan derfor anvendes til at studere ændringer i metabolisme uafhængigt af transkriptionel regulering. Her viser vi, atforuden relativ kvantificering af acyl-coenzym A (CoA) thioestere, kan det isolerede blodplade systemet, anvendes til at undersøge carbon metabolisme. Konkret rapporterer vi brug af metabolisk mærkning med stabile isotoper (ikke-radioaktivt) mærket [13C 6] glucose og [13C 16] -palmitat til sonde inkorporering af [13C] -mærket, ind i den vigtige metabolit acetyl- CoA via glykolyse eller fedtsyreoxidation. Dette giver en stærk, generaliseres, og alsidig platform på grund af den omfattende inddragelse af acyl-CoA arter i biokemiske veje 13,24 og sporbarhed af dette system til at teste andre variabler, såsom hæmning af kompleks I med rotenon 3,33. Ud over oplysningerne i protokollen nedenfor, kan en omfattende beskrivelse af de metoder, der anvendes til isotop mærkning og for LC-MS-baserede analyser findes i Basu og Blair 4.

Protocol

Etik Statement: Alle protokoller vedrørende behandlingen af ​​humane prøver følge retningslinjerne fra The University of Pennsylvania menneskelige videnskabsetisk komité. 1. Udarbejdelse af buffere og 100x Stock Solutions Forbered 1 L basen Tyrodes buffer. Kombiner 8,123 g NaCl, 1,428 g NaHCO3, 0,466 g CaCl2 ∙ 2 H2O, 0,224 g KCI, og 0,095 g MgCl 2. Juster samlet volumen på 1 liter med Hedeselskabet 2 O. Filtersteril…

Representative Results

For at demonstrere anvendeligheden af ​​denne metode har vi gengivet den generaliserbarhed af tidligere beskrevet kompenserende metabolisk tilpasning som følge af udsættelse for rotenon. Dette fund blev tidligere identificeret i cellekulturmodeller og denne undersøgelse havde til formål at teste, om denne metaboliske skift også forekommer i blodplader, som er anuclear og ikke udsat for de samme eksperimentelle artefakter som cellekultur. Dette arbejde blev udført med 6 dage gam…

Discussion

Her har vi vist nytten af ​​isolerede blodplader som en platform for at studere forstyrres mitokondrie stofskifte. Specifikt har vi kendetegnet metabolisk tilpasning som svar på komplekse I inhibering med rotenon.

Nærværende undersøgelse har forlænget tidligere rapporterede resultater på den rolle, komplekse I hæmning af rotenon i cellelinjer til humane blodplader. Vigtigere er, har dette vist, at rotenon også inhiberede blodplade succinyl-CoA-dannelse, stimulerede en stigning i …

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Vi anerkender støtten fra NIH tilskud P30ES013508 og T32ES019851.

Materials

Reagent
Sodium Chloride (NaCl) Sigma-Aldrich 746398
Sodium Bicarbonate (NaHCO3) Sigma-Aldrich S5761
Calcium Chloride Dihydrate (CaCl2 * H2O) Sigma-Aldrich 223506
Potassium Chloride (KCl) Sigma-Aldrich P9541
Magnesium Chloride (MgCl2) Sigma-Aldrich 208337
Glucose Sigma-Aldrich G8270
13C6-Glucose Sigma-Aldrich 389374
Palmitic acid Cayman 10006627
13C16-Palmitic Acid Sigma-Aldrich 605573
Rotenone Sigma-Aldrich R8875
Trichloro Acetic Acid Sigma-Aldrich T6399
5-Sulfosalicylic Acid Sigma-Aldrich 390275
Acetonitirle Fischer Scientific A996-4 (optima)
Water (H2O) Fischer Scientific W7-4 (optima)
Formic acid Fischer Scientific 85171 (optima)
Dimethyl Sulfoxide Sigma-Aldrich 472301
Ethanol Fischer Scientific 04-355-222
Methanol Fischer Scientific A454-4 (optima)
Ammonium Acetate Fischer Scientific A639-500
2 mL Eppendorf Tubes BioExpress C-3229-1
LC vials (plastic) Waters 186002640
10 mL Glass Centrifuge Tubes Kimble Chase 73785-10
Oasis Solid Phase Extraxtion (SPE) Columns Waters WAT094225
Pastuer Pipets Fischer Scientific 13-678-200
Name Company Catalog Number Comments
Equipment
CO2 Water-Jacketed Incubator Nuaire AutoFlow NU-8500
Triple Quadropole Mass Spectrometer Thermo Scientific Finnigan TSQ Quantum
HPLC Thermo Scientific Dionex Ultimate 3000
Source Thermo Scientific HESI II
HPLC Column Phenomenex Luna C18 3 μm particle size, 200 mm x 2 mm

Riferimenti

  1. Ault, K. A. The clinical utility of flow cytometry in the study of platelets. Semin. Hematol. 38 (2), 160-168 (2001).
  2. Avila, C., et al. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp. Clin. Endocrinol. Diabetes. 120 (4), 248-251 (2012).
  3. Basu, S. S., Blair, I. A. Rotenone-mediated changes in intracellular coenzyme A thioester levels: implications for mitochondrial dysfunction. Chem. Res. Toxicol. 24 (10), 1630-1632 (2011).
  4. Basu, S. S., Blair, I. A. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards. Nat. Protoc. 7 (1), 1-12 (2012).
  5. Basu, S. S., Deutsch, E. C., Schmaier, A. A., Lynch, D. R., Blair, I. A. Human platelets as a platform to monitor metabolic biomarkers using stable isotopes and LC-MS. Bioanalysis. 5 (24), 3009-3021 (2013).
  6. Berson, A., et al. Mechanisms for experimental buprenorphine hepatotoxicity: major role of mitochondrial dysfunction versus metabolic activation. J. Hepatol. 34 (2), 261-269 (2001).
  7. Castell, J. V., Jover, R., Martinez-Jimenez, C. P., Gomez-Lechon, M. J. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert. Opin. Drug Metab Toxicol. 2 (2), 183-212 (2006).
  8. Ciccimaro, E., Blair, I. A. Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis. 2 (2), 311-341 (2010).
  9. Dang, C. V. Links between metabolism and cancer. Genes Dev. 26 (9), 877-890 (2012).
  10. Darnell, M., Weidolf, L. Metabolism of xenobiotic carboxylic acids: focus on coenzyme A conjugation, reactivity, and interference with lipid metabolism. Chem. Res. Toxicol. 26 (8), 1139-1155 (2013).
  11. Des Rosiers, C., Fernandez, C. A., David, F., Brunengraber, H. Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates. J. Biol. Chem. 269 (44), 27179-27182 (1994).
  12. Ellis, J. K., et al. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC. Med. 10, 61 (2012).
  13. Grevengoed, T. J., Klett, E. L., Coleman, R. A. Acyl-CoA metabolism and partitioning. Annu. Rev. Nutr. 34, 1-30 (2014).
  14. Haynes, C. A., et al. Quantitation of fatty acyl-coenzyme As in mammalian cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Lipid Res. 49 (5), 1113-1125 (2008).
  15. Ikegawa, S., et al. Characterization of cholyl-adenylate in rat liver microsomes by liquid chromatography/electrospray ionization-mass spectrometry. Anal. Biochem. 266 (1), 125-132 (1999).
  16. Kalghatgi, S., et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med. 5 (192), 192ra85 (2013).
  17. Liu, X., et al. High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet. Mol. Cell Proteomics. 14 (6), 1489-1500 (2015).
  18. Lopez-Gallardo, E., Iceta, R., Iglesias, E., Montoya, J., Ruiz-Pesini, E. OXPHOS toxicogenomics and Parkinson’s disease. Mutat. Res. 728 (3), 98-106 (2011).
  19. Magnes, C., Sinner, F. M., Regittnig, W., Pieber, T. R. LC/MS/MS method for quantitative determination of long-chain fatty acyl-CoAs. Anal. Chem. 77 (9), 2889-2894 (2005).
  20. Mauriala, T., Herzig, K. H., Heinonen, M., Idziak, J., Auriola, S. Determination of long-chain fatty acid acyl-coenzyme A compounds using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 808 (2), 263-268 (2004).
  21. Murphy, T. A., Dang, C. V., Young, J. D. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng. 15, 206-217 (2013).
  22. Paglia, G., et al. Metabolomic analysis of platelets during storage: a comparison between apheresis- and buffy coat-derived platelet concentrates. Transfusion. 55 (2), 301-313 (2015).
  23. Patti, G. J. Separation strategies for untargeted metabolomics. J. Sep. Sci. 34 (24), 3460-3469 (2011).
  24. Robishaw, J. D., Neely, J. R. Coenzyme A metabolism. Am. J. Physiol. 248 (1 Pt 1), E1-E9 (1985).
  25. Rodgers, G. M. Overview of platelet physiology and laboratory evaluation of platelet function. Clin. Obstet. Gynecol. 42 (2), 349-359 (1999).
  26. Salles, I., et al. Development of a high-throughput ELISA assay for platelet function testing using platelet-rich plasma or whole blood. Thromb. Haemost. 104 (2), 392-401 (2010).
  27. Snyder, N. W., Basu, S. S., Worth, A. J., Mesaros, C., Blair, I. A. Metabolism of propionic acid to a novel acyl-coenzyme A thioester by mammalian cell lines and platelets. J. Lipid Res. 56 (1), 142-150 (2015).
  28. Snyder, N. W., Basu, S. S., Zhou, Z., Worth, A. J., Blair, I. A. Stable isotope dilution liquid chromatography/mass spectrometry analysis of cellular and tissue medium- and long-chain acyl-coenzyme A thioesters. Rapid Commun. Mass Spectrom. 28 (16), 1840-1848 (2014).
  29. Snyder, N. W., et al. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture. Anal. Biochem. 474, 59-65 (2015).
  30. Wallace, D. C. Mitochondrial diseases in man and mouse. Science. 283 (5407), 1482-1488 (1999).
  31. Wojtovich, A. P., Brookes, P. S. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res. Cardiol. 104 (2), 121-129 (2009).
  32. Worth, A. J., et al. Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich’s ataxia platelets. Bioanalysis. 7 (15), 1843-1855 (2015).
  33. Worth, A. J., Basu, S. S., Snyder, N. W., Mesaros, C., Blair, I. A. Inhibition of neuronal cell mitochondrial complex I with rotenone increases lipid beta-oxidation, supporting acetyl-coenzyme A levels. J. Biol. Chem. 289 (39), 26895-26903 (2014).
  34. Zhou, L., Schmaier, A. H. Platelet aggregation testing in platelet-rich plasma: description of procedures with the aim to develop standards in the field. Am. J. Clin. Pathol. 123 (2), 172-183 (2005).
check_url/it/53941?article_type=t&slug=lc-ms-analysis-human-platelets-as-platform-for-studying-mitochondrial

Play Video

Citazione di questo articolo
Worth, A. J., Marchione, D. M., Parry, R. C., Wang, Q., Gillespie, K. P., Saillant, N. N., Sims, C., Mesaros, C., Snyder, N. W., Blair, I. A. LC-MS Analysis of Human Platelets as a Platform for Studying Mitochondrial Metabolism. J. Vis. Exp. (110), e53941, doi:10.3791/53941 (2016).

View Video